utias
play

UTIAS C. J. Damaren University of Toronto Institute for - PowerPoint PPT Presentation

UTIAS 1/26 An Adaptive Controller for Two Cooperating Flexible Manipulators UTIAS C. J. Damaren University of Toronto Institute for Aerospace Studies 4925 Dufferin Street Toronto, ON M3H 5T6 Canada Presented at the


  1. UTIAS 1/26 An Adaptive Controller for Two Cooperating Flexible Manipulators UTIAS C. J. Damaren University of Toronto � Institute for Aerospace Studies 4925 Dufferin Street � Toronto, ON M3H 5T6 � Canada � Presented at the International Symposium on Adaptive Motion of Animals and � Machines (AMAM) � �

  2. Outline of Presentation UTIAS 2/26 • Cooperating Flexible Manipulators • Passivity Ideas • Large Payload Dynamics UTIAS • The Adaptive Controller • Experimental Apparatus and Results � � • Conclusions � � � � �

  3. Adaptive Control of UTIAS Rigid Manipulators 3/26 • Motivation: Mass property uncertainty • Typical Controller Structure: adaptive feedforward + PD feedback UTIAS • Stability established using: ⇒ passivity property due to collocation ⇒ [problem is “square”] � ⇒ dynamics are linear in mass properties � � � � � �

  4. UTIAS 4/26 UTIAS � � � � � � �

  5. Cooperating Flexible Manipulators UTIAS 5/26 ✬ ✩ ✈ ✈ r r r B M B 1 B 1 � � ✈ ✈ ❅ F 0 � ❅ � ✫ ✪ ❅ � B M +1 ❅ � ❅ � ✬ ✩ ✬ ✩ ✻ r r r ❅ � ❅ � ❅ ❅ � ❅ ✈ ✈ ✲ ✈ B N � � ✠ � B 0 UTIAS ✫ ✪ ✫ ✪ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Closed-Loop Multibody System � � � � � �

  6. Cooperating Flexible Manipulator Systems: UTIAS Characteristics 6/26 • Nonlinear system ⇒ rigid body nonlinearities “plus vibration modes” • Input actuation and controlled output are noncollocated UTIAS ⇒ Nonminimum phase system ⇒ Nonpassive system � • System is “rigidly” overactuated � � • Vibration frequencies and/or mass properties � may be uncertain � ⇒ robust and/or adaptive control � �

  7. Passivity Definitions UTIAS 7/26 ✲ y (t) u (t) ✲ G input output G is a general input/output map G is passive if � τ UTIAS y T ( t ) u ( t ) dt ≥ 0 , ∀ τ > 0 0 � G is strictly passive if � � � τ � τ � y T ( t ) u ( t ) dt ≥ ε u T ( t ) u ( t ) dt, � 0 0 ε > 0 , ∀ τ > 0 � �

  8. Passivity Theorem UTIAS 8/26 disturbance/ feedforward plant ✲ ❥ + u d (t) y (t) ✲ G − ✻ ❥ ❄ − + u (t) ✛ y d (t) H controller reference signal UTIAS If G is passive and H is strictly passive with finite � gain, then the closed-loop system is L 2 -stable: � � � { u d , y d } ∈ L 2 ⇒ { y , u } ∈ L 2 � � �

  9. Kinematics UTIAS 9/26 payload position: ρ = F 1 ( θ 1 , q e 1 ) = F 2 ( θ 2 , q e 2 ) payload velocity: UTIAS ρ = J 1 θ ( θ 1 , q 1 e ) ˙ ˙ θ 1 + J 1 e ( θ 1 , q 1 e ) ˙ q 1 e = J 2 θ ( θ 2 , q 2 e ) ˙ θ 2 + J 2 e ( θ 2 , q 2 e ) ˙ q 2 e � � � � � � �

  10. Modified Input UTIAS 10/26 The joint torques are determined from � τ : � τ 1 � � C 1 J T � 1 θ τ = = � τ C 2 J T τ 2 2 θ UTIAS C 1 and C 2 with 0 < C i < 1 and C 1 + C 2 = 1 are load-sharing parameters. � � � � � � �

  11. Modified Output UTIAS 11/26 µ -tip rate: ρ + (1 − µ )[ C 1 J 1 θ ˙ θ 1 + C 2 J 2 θ ˙ ρ µ = µ ˙ ˙ θ 2 ] µ -tip position: UTIAS ρ µ ( t ) . = µ ρ ( t ) + (1 − µ )[ C 1 F 1 ( θ 1 , 0 ) + C 2 F 2 ( θ 2 , 0 )] � � For µ = 1 , ρ µ = ρ For µ = 0 , ρ µ . � = C 1 F 1 ( θ 1 , 0 ) + C 2 F 2 ( θ 2 , 0 ) � � � �

  12. Passivity Results UTIAS 12/26 ✲ ˙ τ (t) � ✲ ρ µ (t) G input output This system is passive for µ < 1 when the payload is large, i.e., UTIAS � τ ρ T ˙ τ ( t ) dt ≥ 0 , ∀ τ > 0 µ ( t ) � � 0 � � � � � �

  13. Large Payload Motion Equations I UTIAS 13/26 Rigid task-space equations: M ρρ ¨ ρ + C ρ ( ρ , ˙ ρ ) ˙ ρ = � τ PLUS UTIAS Elastic equations consistent with a cantilevered payload. � � � � � � �

  14. Large Payload Motion Equations II UTIAS 14/26 Including only the payload mass properties: ν + ν ⊗ Mν � = P − T ( ρ ) � M ˙ τ � �� W ( ˙ ν , ν , ν ) a where UTIAS � m 1 − c × � � v � M = , ν = , c × J ω � � ω × � � C M 0 ( ρ ) � O O ν ⊗ = � , P = v × ω × S M 0 ( ρ ) O � W is the regressor. � a is a column of mass properties. � Note: ν = P ( ρ ) ˙ ρ � �

  15. Key Definitions UTIAS 15/26 desired trajectory: { ρ d , ˙ ρ d , ¨ ρ d } tracking error: ρ µd . ρ µ = ρ µ − ρ µd , � = ρ d filtered error: ρ µ , Λ = Λ T > O s µ = ˙ ρ µ + Λ � � UTIAS If s µ ∈ L 2 , then � ρ µ → 0 as t → 0 . body-frame ‘desired’ trajectory: � ν d = P ( ρ ) ˙ ρ d � body-frame ‘reference’ trajectory: � � ν r = ν d − P ( ρ )Λ � ρ µ � � �

  16. The Adaptive Controller I UTIAS 16/26 control law: τ = P T W ( ˙ � ν r , ν r , ν ) � a ( t ) − K d s µ Mν ] − K d [ ˙ = P T [ � r � ν r + ν ⊗ M ˙ ρ µ + Λ � � ρ µ ] UTIAS adaptation law: ˙ a = − Γ W T ( ˙ � ν r , ν r , ν ) P ( ρ ) s µ , � Γ = Γ T > O � � � � � �

  17. The Adaptive Controller II UTIAS 17/26 ✎☞ ✎☞ + + τ − � � τ d ① ① ✍✌ ✍✌ − P T W a ✲ ✲ ✲ ✲ s µ G − − ✻ ✻ ✛ K d − P T W � a UTIAS ✗✔ ✗✔ ✛ ✛ ✛ ✖✕ ❅ � ✖✕ ❅ � Γ 1 � ❅ � ❅ s ✻ ✻ � P T W W T P � � � � � �

  18. Experimental Apparatus UTIAS 18/26 UTIAS � � � � � � �

  19. Closed-Loop Configuration UTIAS 19/26 UTIAS � � � � � � �

  20. Payload UTIAS 20/26 UTIAS � � � � � � �

  21. Mode Shapes UTIAS 21/26 UTIAS � � � � � � �

  22. PD Feedback Alone ( C 1 = C 2 = 0 . 5 , µ = 0 . 8 ) UTIAS 22/26 y-position (m) vs. x-position (m) 1.0 0.9 UTIAS 0.8 des. PD 0.7 � � 0.6 � � 0.5 � -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 -0.0 � �

  23. Nonadaptive Results ( C 1 = C 2 = 0 . 5 ) UTIAS 23/26 x-position (m) vs. time y-position (m) vs. time y-position (m) vs. x-position (m) -0.1 1.0 1.0 0.9 0.9 -0.2 0.8 0.8 des. -0.3 fixed 0.7 0.7 pars. -0.4 0.6 0.6 UTIAS -0.5 0.5 0.5 0 5 10 15 20 25 0 5 10 15 20 25 -0.5 -0.4 -0.3 -0.2 -0.1 time (sec) time (sec) � � � � � � �

  24. Adaptive Results UTIAS 24/26 x-pos (m) error vs. time y-pos (m) error vs. time z-orientation (rad) vs. time 0.02 0.05 0.1 0.01 0.03 0.00 0.01 -0.01 0.0 -0.01 -0.02 fixed par. UTIAS C1 = 0.25 -0.03 -0.03 C1 = 0.75 -0.04 -0.05 -0.1 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 time (sec) time (sec) time (sec) � � � � � � �

  25. Parameter Estimates UTIAS 25/26 2 mass (kg) vs. time c_y (kg-m) vs. time J_zz (kg-m ) vs. time 40. 5.0 20. 4.0 30. 15. 3.0 20. 2.0 10. 1.0 UTIAS 10. estimate 5. 0.0 payload value 0. -1.0 0. 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 time (sec) time (sec) time (sec) � � � � � � �

  26. Summary of Presentation UTIAS 26/26 • Passivity-based adaptive control: µ -tip rates + load-sharing • Adaptive feedforward depends only on “payload equations” UTIAS • Robust since passivity depends only on a large payload � • Results exhibit good tracking � � � � � �

More recommend