Proof 1 st try Introduction Flag Algebras Flags Upper bounds on the size of 4 - and 6 -cycle-free subgraphs of the hypercube J´ ozsef Balogh, Ping Hu, Bernard Lidick´ y and Hong Liu University of Illinois at Urbana-Champaign AMS - March 18, 2012
Proof 1 st try Introduction Flag Algebras Flags Hypercube • Q n is n -dimensional hypercube ( n -cube) Q 1 Q 2 Q 3 • e ( G ) := | E ( G ) | • ex Q ( n , F ) := the maximum number of edges of a F -free subgraph of Q n ex Q ( n , F ) • π Q ( F ) = lim e ( Q n ) n →∞
Proof 1 st try Introduction Flag Algebras Flags Hypercube • Q n is n -dimensional hypercube ( n -cube) Q 1 Q 2 Q 3 • e ( G ) := | E ( G ) | • ex Q ( n , F ) := the maximum number of edges of a F -free subgraph of Q n ex Q ( n , F ) • π Q ( F ) = lim e ( Q n ) n →∞
Proof 1 st try Introduction Flag Algebras Flags Hypercube • Q n is n -dimensional hypercube ( n -cube) Q 1 Q 2 Q 3 • e ( G ) := | E ( G ) | • ex Q ( n , F ) := the maximum number of edges of a F -free subgraph of Q n ex Q ( n , F ) • π Q ( F ) = lim e ( Q n ) n →∞
Proof 1 st try Introduction Flag Algebras Flags Hypercube • Q n is n -dimensional hypercube ( n -cube) Q 1 Q 2 Q 3 • e ( G ) := | E ( G ) | • ex Q ( n , F ) := the maximum number of edges of a F -free subgraph of Q n ex Q ( n , F ) • π Q ( F ) = lim e ( Q n ) n →∞
Proof 1 st try Introduction Flag Algebras Flags π Q ( C 2 t ) Conjecture (Erd˝ os [1984]) π Q ( C 4 ) = 1 / 2 , π Q ( C 2 t ) = 0 for t > 2
Proof 1 st try Introduction Flag Algebras Flags π Q ( C 2 t ) Conjecture (Erd˝ os [1984]) π Q ( C 4 ) = 1 / 2 , π Q ( C 2 t ) = 0 for t > 2 Q 7 Q 7 π Q ( C 4 ) ≥ 1 / 2
Proof 1 st try Introduction Flag Algebras Flags π Q ( C 2 t ) Conjecture (Erd˝ os [1984]) π Q ( C 4 ) = 1 / 2 , π Q ( C 2 t ) = 0 for t > 2 Q 7 Q 7 π Q ( C 4 ) ≥ 1 / 2
Proof 1 st try Introduction Flag Algebras Flags π Q ( C 2 t ) Conjecture (Erd˝ os [1984]) π Q ( C 4 ) = 1 / 2 , π Q ( C 2 t ) = 0 for t > 2 Theorem (Chung [1992], Brouwer–Dejter–Thomassen [1993]) π Q ( C 6 ) ≥ 1 / 4
Proof 1 st try Introduction Flag Algebras Flags π Q ( C 2 t ) Conjecture (Erd˝ os [1984]) π Q ( C 4 ) = 1 / 2 , π Q ( C 2 t ) = 0 for t > 2 Theorem (Chung [1992], Brouwer–Dejter–Thomassen [1993]) π Q ( C 6 ) ≥ 1 / 4 Theorem (Conder [1993]) π Q ( C 6 ) ≥ 1 / 3
Proof 1 st try Introduction Flag Algebras Flags π Q ( C 2 t ) Conjecture (Erd˝ os [1984]) π Q ( C 4 ) = 1 / 2 , π Q ( C 2 t ) = 0 for t > 2 . Theorem (Chung [1992]) π Q ( n , C 2 t ) = 0 for even t ≥ 4 . uredi–¨ Theorem (F¨ Ozkahya [2009]) π Q ( C 2 t ) = 0 for odd t ≥ 7 . if π Q ( C 10 ) = 0 is still open.
Proof 1 st try Introduction Flag Algebras Flags π Q ( C 2 t ) Conjecture (Erd˝ os [1984]) π Q ( C 4 ) = 1 / 2 , π Q ( C 2 t ) = 0 for t > 2 . Theorem (Chung [1992]) π Q ( n , C 2 t ) = 0 for even t ≥ 4 . uredi–¨ Theorem (F¨ Ozkahya [2009]) π Q ( C 2 t ) = 0 for odd t ≥ 7 . if π Q ( C 10 ) = 0 is still open.
Proof 1 st try Introduction Flag Algebras Flags π Q ( C 4 ) Theorem (Brass–Harborth–Nienborg [1995]) ex Q ( n , C 4 ) ≥ 1 1 2 (1 + √ n ) e ( Q n ) (valid when n is a power of 4 ) Theorem (Chung [1992]) π Q ( C 4 ) ≤ 0 . 62284 . Theorem (Thomason–Wagner [2009])
Proof 1 st try Introduction Flag Algebras Flags π Q ( C 4 ) Theorem (Brass–Harborth–Nienborg [1995]) ex Q ( n , C 4 ) ≥ 1 1 2 (1 + √ n ) e ( Q n ) (valid when n is a power of 4 ) Theorem (Chung [1992]) π Q ( C 4 ) ≤ 0 . 62284 . Theorem (Thomason–Wagner [2009])
Proof 1 st try Introduction Flag Algebras Flags π Q ( C 4 ) Theorem (Brass–Harborth–Nienborg [1995]) ex Q ( n , C 4 ) ≥ 1 1 2 (1 + √ n ) e ( Q n ) (valid when n is a power of 4 ) Theorem (Chung [1992]) π Q ( C 4 ) ≤ 0 . 62284 . Theorem (Thomason–Wagner [2009]) π Q ( C 4 ) ≤ 0 . 62256 .
Proof 1 st try Introduction Flag Algebras Flags π Q ( C 4 ) Theorem (Brass–Harborth–Nienborg [1995]) ex Q ( n , C 4 ) ≥ 1 1 2 (1 + √ n ) e ( Q n ) (valid when n is a power of 4 ) Theorem (Chung [1992]) π Q ( C 4 ) ≤ 0 . 62284 . Theorem (Thomason–Wagner [2009]) π Q ( C 4 ) ≤ 0 . 62083 .
Proof 1 st try Introduction Flag Algebras Flags π Q ( C 4 ) Theorem (Brass–Harborth–Nienborg [1995]) ex Q ( n , C 4 ) ≥ 1 1 2 (1 + √ n ) e ( Q n ) (valid when n is a power of 4 ) Theorem (Chung [1992]) π Q ( C 4 ) ≤ 0 . 62284 . Theorem (Thomason–Wagner [2009]) π Q ( C 4 ) ≤ 0 . 62083 . Theorem (Balogh–Hu–L–Liu, ind. Baber [2012+]) π Q ( C 4 ) ≤ 0 . 6068 .
Proof 1 st try Introduction Flag Algebras Flags π Q ( n , C 6 ) Theorem (Conder [1993]) π Q ( C 6 ) ≥ 1 / 3 . Theorem (Chung [1992]) √ π Q ( C 6 ) ≤ 2 − 1 ≈ 0 . 41421 .
Proof 1 st try Introduction Flag Algebras Flags π Q ( n , C 6 ) Theorem (Conder [1993]) π Q ( C 6 ) ≥ 1 / 3 . Theorem (Chung [1992]) √ π Q ( C 6 ) ≤ 2 − 1 ≈ 0 . 41421 .
Proof 1 st try Introduction Flag Algebras Flags π Q ( n , C 6 ) Theorem (Conder [1993]) π Q ( C 6 ) ≥ 1 / 3 . Theorem (Chung [1992]) √ π Q ( C 6 ) ≤ 2 − 1 ≈ 0 . 41421 . Theorem (Balogh–Hu–L–Liu, ind. Baber [2012+]) π Q ( C 6 ) ≤ 0 . 3755 .
Proof 1 st try Introduction Flag Algebras Flags Flag Algebras Definition p ( H , G ): the probability that a random | V ( H ) | -set U in V ( G ) induces G [ U ] isomorphic to H . Razborov [2007] developed flag algebras. Let G be the family of graphs forbidding some structures, then flag algebras can be used to bound G ∈G , | V ( G ) |→∞ p ( H , G ) . lim
Proof 1 st try Introduction Flag Algebras Flags Results using Flag Algebras Theorem (Hladk´ y–Kr´ al’–Norine [2009]) Every n-vertex digraph with minimum outdegree at least 0 . 3465 n contains a triangle. Theorem (Hatami–Hladk´ y–Kr´ al’–Norine–Razborov [2011], Grzesik [2011]) The number of C 5 s in a triangle-free graph of order n is at most ( n / 5) 5 . Theorem (Falgas-Ravry–Vaughan [2011]) π ( K − 4 , C 5 , F 3 , 2 ) = 12 / 49 , π ( K − 4 , F 3 , 2 ) = 5 / 18 . F 3 , 2 : { 123 , 145 , 245 , 345 } , C 5 : { 123 , 234 , 345 , 451 , 512 } .
Proof 1 st try Introduction Flag Algebras Flags Results using Flag Algebras Theorem (Hladk´ y–Kr´ al’–Norine [2009]) Every n-vertex digraph with minimum outdegree at least 0 . 3465 n contains a triangle. Theorem (Hatami–Hladk´ y–Kr´ al’–Norine–Razborov [2011], Grzesik [2011]) The number of C 5 s in a triangle-free graph of order n is at most ( n / 5) 5 . Theorem (Falgas-Ravry–Vaughan [2011]) π ( K − 4 , C 5 , F 3 , 2 ) = 12 / 49 , π ( K − 4 , F 3 , 2 ) = 5 / 18 . F 3 , 2 : { 123 , 145 , 245 , 345 } , C 5 : { 123 , 234 , 345 , 451 , 512 } .
Proof 1 st try Introduction Flag Algebras Flags Results using Flag Algebras Theorem (Hladk´ y–Kr´ al’–Norine [2009]) Every n-vertex digraph with minimum outdegree at least 0 . 3465 n contains a triangle. Theorem (Hatami–Hladk´ y–Kr´ al’–Norine–Razborov [2011], Grzesik [2011]) The number of C 5 s in a triangle-free graph of order n is at most ( n / 5) 5 . Theorem (Falgas-Ravry–Vaughan [2011]) π ( K − 4 , C 5 , F 3 , 2 ) = 12 / 49 , π ( K − 4 , F 3 , 2 ) = 5 / 18 . F 3 , 2 : { 123 , 145 , 245 , 345 } , C 5 : { 123 , 234 , 345 , 451 , 512 } .
Proof 1 st try Introduction Flag Algebras Flags Results using Flag Algebras Theorem (Hladk´ y–Kr´ al’–Norine [2009]) Every n-vertex digraph with minimum outdegree at least 0 . 3465 n contains a triangle. Theorem (Hatami–Hladk´ y–Kr´ al’–Norine–Razborov [2011], Grzesik [2011]) The number of C 5 s in a triangle-free graph of order n is at most ( n / 5) 5 . Theorem (Falgas-Ravry–Vaughan [2011]) π ( K − 4 , C 5 , F 3 , 2 ) = 12 / 49 , π ( K − 4 , F 3 , 2 ) = 5 / 18 . F 3 , 2 : { 123 , 145 , 245 , 345 } , C 5 : { 123 , 234 , 345 , 451 , 512 } .
Proof 1 st try Introduction Flag Algebras Flags Proof by an Example Example π Q ( C 4 ) ≤ 2 / 3 Bound infinite problem by a finite piece. Definition H n : the family of spanning subgraphs of Q n not containing C 4 . Let H ∈ H s , G ∈ H n , s < n , p ( H , G ) is the probability that a random s -hypercube in G induces H . ρ ( G ) = e ( G ) / e ( Q n ) . � ρ ( G ) = ρ ( H ) p ( H , G ) H ∈H s ρ ( G ) ≤ max H ∈H s ρ ( H ) π Q ( C 4 ) ≤ max H ∈H s ρ ( H )
Proof 1 st try Introduction Flag Algebras Flags Proof by an Example Example π Q ( C 4 ) ≤ 2 / 3 Bound infinite problem by a finite piece. Definition H n : the family of spanning subgraphs of Q n not containing C 4 . Let H ∈ H s , G ∈ H n , s < n , p ( H , G ) is the probability that a random s -hypercube in G induces H . ρ ( G ) = e ( G ) / e ( Q n ) . � ρ ( G ) = ρ ( H ) p ( H , G ) H ∈H s ρ ( G ) ≤ max H ∈H s ρ ( H ) π Q ( C 4 ) ≤ max H ∈H s ρ ( H )
Proof 1 st try Introduction Flag Algebras Flags Proof by an Example Example π Q ( C 4 ) ≤ 2 / 3 Bound infinite problem by a finite piece. Definition H n : the family of spanning subgraphs of Q n not containing C 4 . Let H ∈ H s , G ∈ H n , s < n , p ( H , G ) is the probability that a random s -hypercube in G induces H . ρ ( G ) = e ( G ) / e ( Q n ) . � ρ ( G ) = ρ ( H ) p ( H , G ) H ∈H s ρ ( G ) ≤ max H ∈H s ρ ( H ) π Q ( C 4 ) ≤ max H ∈H s ρ ( H )
Recommend
More recommend