kernel lower bounds using co nondeterminism finding
play

Kernel lower bounds using co-nondeterminism: Finding induced - PowerPoint PPT Presentation

Kernel lower bounds using co-nondeterminism: Finding induced hereditary subgraphs Stefan Kratsch, Marcin Pilipczuk, Ashutosh Rai, Venkatesh Raman SWAT 2012, Helsinki S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using


  1. Kernel lower bounds using co-nondeterminism: Finding induced hereditary subgraphs Stefan Kratsch, Marcin Pilipczuk, Ashutosh Rai, Venkatesh Raman SWAT 2012, Helsinki S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 1/12

  2. Kernelization instance of NP-hard problem S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 2/12

  3. Kernelization k instance of NP-hard problem S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 2/12

  4. Kernelization k instance of NP-hard problem S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 2/12

  5. Kernelization k poly time instance of NP-hard problem S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 2/12

  6. Kernelization k poly time size ≤ g ( k ) instance of NP-hard problem S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 2/12

  7. Kernelization k poly time size ≤ g ( k ) instance of NP-hard problem small: g ( k ) polynomial S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 2/12

  8. Kernelization k poly time size ≤ g ( k ) instance of NP-hard problem small: g ( k ) polynomial sometimes impossible S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 2/12

  9. Kernelization lower bounds [Bodlaender, Downey, Fellows, Hermelin, ICALP’08] S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 3/12

  10. Kernelization lower bounds [Bodlaender, Downey, Fellows, Hermelin, ICALP’08] t instances of hard language L S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 3/12

  11. Kernelization lower bounds [Bodlaender, Downey, Fellows, Hermelin, ICALP’08] poly time t instances of hard language L S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 3/12

  12. Kernelization lower bounds [Bodlaender, Downey, Fellows, Hermelin, ICALP’08] k poly time t instances OR instance of hard language L of param. lang. Q S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 3/12

  13. Kernelization lower bounds [Bodlaender, Downey, Fellows, Hermelin, ICALP’08] k poly time poly time t instances OR instance of hard language L of param. lang. Q S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 3/12

  14. Kernelization lower bounds [Bodlaender, Downey, Fellows, Hermelin, ICALP’08] k poly time poly time size ≤ poly ( k ) t instances OR instance of hard language L of param. lang. Q S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 3/12

  15. Kernelization lower bounds [Bodlaender, Downey, Fellows, Hermelin, ICALP’08] k poly time poly time size ≤ poly ( k ) t instances OR instance of hard language L of param. lang. Q [Fortnow, Santhanam, STOC’08] ⇒ L ∈ coNP / poly S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 3/12

  16. Kernelization lower bounds [Bodlaender, Downey, Fellows, Hermelin, ICALP’08] k poly time poly time size ≤ poly ( k ) t instances OR instance of hard language L of param. lang. Q [Fortnow, Santhanam, STOC’08] ⇒ L ∈ coNP / poly L is NP-hard ⇒ NP ⊆ coNP / poly ⇒ PH = Σ P 3 S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 3/12

  17. Kernelization lower bounds [Bodlaender, Downey, Fellows, Hermelin, ICALP’08] k coNP time coNP time size ≤ poly ( k ) t instances OR instance of hard language L of param. lang. Q [Fortnow, Santhanam, STOC’08] ⇒ L ∈ coNP / poly L is NP-hard ⇒ NP ⊆ coNP / poly ⇒ PH = Σ P 3 S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 3/12

  18. Kernelization lower bounds [Bodlaender, Downey, Fellows, Hermelin, ICALP’08] k coNP time coNP time size ≤ poly ( k ) t instances OR instance of hard language L of param. lang. Q [Fortnow, Santhanam, STOC’08] ⇒ L ∈ coNP / poly L is NP-hard ⇒ NP ⊆ coNP / poly ⇒ PH = Σ P 3 under “coNP reductions” S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 3/12

  19. Kernelization lower bounds with co-nondeterminism Start with a language L , that is “NP-hard under co-nondeterministic many-one reductions”. S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 4/12

  20. Kernelization lower bounds with co-nondeterminism Start with a language L , that is “NP-hard under co-nondeterministic many-one reductions”. I.e., ∃ nondeterministic poly-time reduction from NP-hard ¯ L to L , that S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 4/12

  21. Kernelization lower bounds with co-nondeterminism Start with a language L , that is “NP-hard under co-nondeterministic many-one reductions”. I.e., ∃ nondeterministic poly-time reduction from NP-hard ¯ L to L , that if input ∈ ¯ L , then all outputs ∈ L , and S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 4/12

  22. Kernelization lower bounds with co-nondeterminism Start with a language L , that is “NP-hard under co-nondeterministic many-one reductions”. I.e., ∃ nondeterministic poly-time reduction from NP-hard ¯ L to L , that if input ∈ ¯ L , then all outputs ∈ L , and ∈ ¯ if input / L , then on at least one computation path output / ∈ L . S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 4/12

  23. Kernelization lower bounds with co-nondeterminism Start with a language L , that is “NP-hard under co-nondeterministic many-one reductions”. I.e., ∃ nondeterministic poly-time reduction from NP-hard ¯ L to L , that if input ∈ ¯ L , then all outputs ∈ L , and ∈ ¯ if input / L , then on at least one computation path output / ∈ L . Compose t instances x i in co-nondeterministic poly-time into one OR-instance of Q with parameter ≤ poly (max i | x i | ) t o (1) . S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 4/12

  24. Kernelization lower bounds with co-nondeterminism Start with a language L , that is “NP-hard under co-nondeterministic many-one reductions”. I.e., ∃ nondeterministic poly-time reduction from NP-hard ¯ L to L , that if input ∈ ¯ L , then all outputs ∈ L , and ∈ ¯ if input / L , then on at least one computation path output / ∈ L . Compose t instances x i in co-nondeterministic poly-time into one OR-instance of Q with parameter ≤ poly (max i | x i | ) t o (1) . That is, if at least one x i ∈ L , then all outputs ∈ Q . S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 4/12

  25. Kernelization lower bounds with co-nondeterminism Start with a language L , that is “NP-hard under co-nondeterministic many-one reductions”. I.e., ∃ nondeterministic poly-time reduction from NP-hard ¯ L to L , that if input ∈ ¯ L , then all outputs ∈ L , and ∈ ¯ if input / L , then on at least one computation path output / ∈ L . Compose t instances x i in co-nondeterministic poly-time into one OR-instance of Q with parameter ≤ poly (max i | x i | ) t o (1) . That is, if at least one x i ∈ L , then all outputs ∈ Q . If all x i / ∈ L , then on at least one computation path output / ∈ Q . S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 4/12

  26. Kernelization lower bounds with co-nondeterminism Start with a language L , that is “NP-hard under co-nondeterministic many-one reductions”. I.e., ∃ nondeterministic poly-time reduction from NP-hard ¯ L to L , that if input ∈ ¯ L , then all outputs ∈ L , and ∈ ¯ if input / L , then on at least one computation path output / ∈ L . Compose t instances x i in co-nondeterministic poly-time into one OR-instance of Q with parameter ≤ poly (max i | x i | ) t o (1) . That is, if at least one x i ∈ L , then all outputs ∈ Q . If all x i / ∈ L , then on at least one computation path output / ∈ Q . Then, a (co-nondeterministic) polynomial kernelization of Q implies NP ⊆ coNP / poly . S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 4/12

  27. Case study: Π- Induced Subgraph Co-nondeterminism first used by Kratsch (SODA’12) for Ramsey . S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 5/12

  28. Case study: Π- Induced Subgraph Co-nondeterminism first used by Kratsch (SODA’12) for Ramsey . Does a graph G has a clique or independent size of size k ? S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 5/12

  29. Case study: Π- Induced Subgraph Co-nondeterminism first used by Kratsch (SODA’12) for Ramsey . Does a graph G has a clique or independent size of size k ? Our work: generalize to most important cases of Π- Induced Subgraph . S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 5/12

Recommend


More recommend