Updates on the PASTA Chip Front-End Valen&no ¡Di ¡Pietro ¡ II. ¡Physikalisches ¡Ins&tut, ¡JLU ¡Gießen ¡ ¡ ¡ PANDA ¡XLVII. ¡Collabora&on ¡Mee&ng ¡ GSI, ¡December ¡10 th , ¡2013 ¡ ¡
Contents ① TOFPET front-end Ø Schematic Ø Performance ② Looking back to September Ø Front-end chain Ø Performance ③ Updates Ø Dual-polarity capable architecture ④ Conclusions and perspectives 2 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
PASTA Chip 3 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
PASTA Chip Based on TOFPET 3 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
PASTA Chip New design Based on TOFPET 3 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
TOFPET Front-End: Schematic 4 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
TOFPET Front-End: Schematic Common Gate Stage 4 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
TOFPET Front-End: Performance Linearity Noise ��� ���� � �������� ��� �������� ���� ��� ���� ��� ���� ����� ����� ����� ����� ����� ����� ���� ����� ������������������������ Simulations by Manuel D. Rolo 5 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
TOFPET Front-End: Performance Linearity Noise ��� ���� PASTA working range � �������� ��� �������� ���� ��� ���� ��� ���� ����� ����� ����� ����� ����� ����� ���� ����� ������������������������ Simulations by Manuel D. Rolo 5 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Back to September FRONT-END CHAIN 6 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Back to September Capable to process ONLY negative polarity signals 6 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Back to September Capable to process ONLY OK negative polarity signals 6 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Back to September Main cause of the non-linearity of the system Capable to process ONLY OK negative polarity signals 6 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Back to September Main cause of the non-linearity of the system Capable to process ONLY Not yet OK negative polarity signals designed 6 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Old Chain Performance Linearity Noise 7 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Updates Ø Introduction of a dual-polarity capable architecture in the first stage (based on the design made by the BNL group for ATLAS Muon Spectrometer Upgrade) Ø First attempts to optimize the ToT Stage in order to reduce the non-linearity observed for low charges Ø Design of an hysteresis comparator in order to be less sensitive to the noise 8 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
BNL Architecture ���� � �������� � ������ � ��������� � � � � � � � ���� � � � � � � � �� � � � ��� � � � �� � � ���� � �� � ������� �� �� � ������ ������ � � � � ���� � �� � ���� ������ ���� �� ���� � ������ � � ���� � � � � ��� � ���������� � ������ � �� � ������� Slide from “VMM – a self-triggered front-end ASIC for ATLAS upgrades” by G. De Geronimo 9 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
PASTA Preamplifier Stage 10 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
PASTA Preamplifier Stage New Output Stage 10 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
PASTA Preamplifier Stage Open Closed Negative Plarity Configuration 10 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
PASTA Preamplifier Stage Open Closed Positive Plarity Configuration 10 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Negative Polarity Input: Linearity MIP " % ( ) − f Q in ( ) nonLinearity = Mean ToT Q in = 0.21% $ ' ( ) ToT Q in $ ' # & 11 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Positive Polarity Input: Linearity MIP " % ( ) − f Q in ( ) nonLinearity = Mean ToT Q in = 3.27% $ ' ( ) ToT Q in $ ' # & 12 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
“Dynamic” ToT Stage 13 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
“Dynamic” ToT Stage IDEAL 13 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Negative Polarity Input 14 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Negative Polarity Input Minimum detected charge >1fC 14 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Positive Polarity Input 15 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Details about the Threshold Ø Considering a minimum event rate per channel equal to 1kHz, the threshold to have a noise frequency of 1% is: V TH = − 2ln(4 3 ⋅ t peak ⋅ f n ) ⋅ V n , rms Rice, S.O. (1944). “Mathematical Analysis of Random Noise” 16 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Details about the Threshold Ø Considering a minimum event rate per channel equal to 1kHz, the threshold to have a noise frequency of 1% is: V TH = − 2ln(4 3 ⋅ t peak ⋅ f n ) ⋅ V n , rms Peaking Time Noise Frequency Rms Noise Rice, S.O. (1944). “Mathematical Analysis of Random Noise” 16 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Negative Polarity Input: Noise 17 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Negative Polarity Input: Noise Longer Strips Capacitance Working Range 17 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Positive Polarity Input: Noise 18 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Positive Polarity Input: Noise Longer Strips Capacitance Working Range 18 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Some important parameters Parameters Parameters Negative Negative Positive Positive (Q in in =1fC) =1fC) Polarity Polarity Input Input Polarity Polarity input input ENC ENC 1.1ke - 800e - SNR ( SNR (Q in in =4fC) =4fC) ~ 52 ~ 61 t peak 21.6ns 23.9ns peak Output Output rms rms 1.6mV 3.8mV Noise Noise Signal Signal length length ~430ns ~400ns (Q in in =40fC) =40fC) 19 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Old VS New chain ü Dual-polarity capability ü ENC MAX [C det =20pF]: ~1.4ke - à ~1.1ke - (ATLAS noise ~1.5ke - ) ✗ Maximum signal length: x2 before 20 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Conclusions and Perspectives Ø First two stages: ready for layout Ø Last stage: under study Ø Comparator: layout done Ø Understand key parameters Ø Layout all the stages Ø Submit 21 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Conclusions and Perspectives Ø First two stages: ready for layout Ø Last stage: under study Ø Comparator: layout done Ø Understand key parameters Ø Layout all the stages Ø Submit 21 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Thank you for your kind attention
Backup Slides
NIP Configuration Linearity Residual Plot Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
PIP Configuration Linearity Residual Plot Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro
Recommend
More recommend