Universal Polarization for Processes with Memory Boaz Shuval and Ido Tal Andrew and Erna Viterbi Department of Electrical Engineering Technion — Israel Institute of Technology Haifa, 32000, Israel July 2019 1/16
Setting � Communication with uncertainty: � Encoder: Knows channel belongs to a set of channels � Decoder: Knows channel statistics (e.g., via estimation) � Memory: � In channels � In input distribution � Universal code: � Vanishing error probability over set � Best rate (infimal information rate over set) Goal: Universal Code based on Polarization 2/16
Why? � Polar codes have many good properties � rate-optimal (even under memory!) � vanishing error probability � low complexity encoding/decoding/construction � But... � Polar codes must be tailored to the channel at hand � Sometimes, the channel isn’t known apriori to encoder � Example: Frequency Selective Fading ⇒ ISI � m � � Y n = h 0 X n + h i X n − i + noise i = 1 3/16
Polar Codes: lightning reminder X N Y N 1 1 Channel � Goal: Decode X N 1 from Y N 1 4/16
Polar Codes: lightning reminder X N Y N 1 1 Channel 1 = f Arıkan ( X N 1 ) F N � Goal: Decode X N 1 from Y N 1 � Transform f Arıkan is one-to-one and onto � recursively defined 1 ⇐ ⇒ Decoding F N � Decoding X N 1 4/16
Polar Codes: lightning reminder X N Y N 1 1 Channel 1 = f Arıkan ( X N 1 ) G i = ( F i − 1 , Y N 1 ) F N 1 � Successive-Cancellation decoding: � Compute G i from decoded F i − 1 1 � Decode F i from G i � Polarization: fix β < 1 / 2 L N = { i | H ( F i | G i ) < 2 − N β } � Low-Entropy set: � High-Entropy set: H N = { i | H ( F i | G i ) > 1 − 2 − N β } � For N large, | L N | + | H N | ≈ N � Coding scheme (simplified): � i ∈ L N ⇒ Transmit data � i ∈ H N ⇒ Reveal to decoder 4/16
Polar Codes: lightning reminder X N Y N 1 1 Channel 1 = f Arıkan ( X N 1 ) G i = ( F i − 1 , Y N 1 ) F N 1 � Successive-Cancellation decoding: � Compute G i from decoded F i − 1 1 � Decode F i from G i � Polarization: fix β < 1 / 2 L N = { i | H ( F i | G i ) < 2 − N β } � Low-Entropy set: � High-Entropy set: H N = { i | H ( F i | G i ) > 1 − 2 − N β } � For N large, | L N | + | H N | ≈ N � Coding scheme (simplified): Not Universal! � i ∈ L N ⇒ Transmit data L N , H N channel-dependent � i ∈ H N ⇒ Reveal to decoder 4/16
Previous Work on Universal Polarization � All for the memoryless case � Works with memoryless settings similar to ours: � Hassani & Urbanke 2014 � S ¸as ¸o˘ glu& Wang 2016 (conference version: 2014) 5/16
Previous Work on Universal Polarization � All for the memoryless case � Works with memoryless settings similar to ours: � Hassani & Urbanke 2014 � S ¸as ¸o˘ glu& Wang 2016 (conference version: 2014) 5/16
Our Construction � Simplified generalization of S ¸as ¸o˘ glu-Wang construction � Memory at channel and/or input � Two stages: “slow” and “fast” 6/16
Our Construction � Simplified generalization of S ¸as ¸o˘ glu-Wang construction � Memory at channel and/or input � Two stages: “slow” and “fast” L f H X N F N 1 1 � f one-to-one and onto, recursively defined � ( η , L , H )-monopolarization: For any η > 0, there exist N and index sets L , H such that H ( F i | G i ) < η for all i ∈ L either H ( F i | G i ) > 1 − η for all i ∈ H or � Universal : L , H process independent � Slow 6/16
Our Construction � Simplified generalization of S ¸as ¸o˘ glu-Wang construction � Memory at channel and/or input � Two stages: “slow” and “fast” i ∈ L ⇒ H ( F i | G i ) < η L f N H L f H L f H ˆ N copies L f H 6/16
Our Construction � Simplified generalization of S ¸as ¸o˘ glu-Wang construction � Memory at channel and/or input � Two stages: “slow” and “fast” L ˆ f f Arıkan N N H L f H L f H ˆ N copies L f H 6/16
Our Construction � Simplified generalization of S ¸as ¸o˘ glu-Wang construction � Memory at channel and/or input � Two stages: “slow” and “fast” L ˆ f f Arıkan N N H L f H f Arıkan L f | L | copies H ˆ N copies f Arıkan L f H 6/16
Our Construction � Simplified generalization of S ¸as ¸o˘ glu-Wang construction � Memory at channel and/or input � Two stages: “slow” and “fast” L ˆ f f Arıkan N N H L f P e ≤ | L | · 2 − ˆ N β H f Arıkan Rate ≈ | L | L f | L | copies H N ˆ N copies f Arıkan L f H 6/16
Our Construction � Simplified generalization of S ¸as ¸o˘ glu-Wang construction � Memory at channel and/or input � Two stages: “slow” and “fast” Our focus L ˆ f f Arıkan N N H L f P e ≤ | L | · 2 − ˆ N β H f Arıkan Rate ≈ | L | L f | L | copies H N ˆ N copies f Arıkan L f H 6/16
A framework for memory � Stationary process: ( S i , X i , Y i ) N i = 1 � Finite number of states: S i ∈ S , where | S | < ∞ � Hidden state: S i is unknown to encoder and decoder � Markov property: P ( s i , x i , y i |{ s j , x j , y j } j < i ) = P ( s i , x i , y i | s i − 1 ) � FAIM state sequence: F inite-state, a periodic, i rreducible M arkov chain � ( X i , Y i ) N i = 1 FAIM-derived process � FAIM ⇒ mixing: if M − N large enough, ( X N −∞ , Y N −∞ ) and ( X ∞ M , Y ∞ M ) almost independent 7/16
Forgetfulness � Required for proof of monopolarization � FAIM process ( S i , X i , Y i ) is forgetful if for any ǫ > 0 there exists natural λ such that if k ≥ λ , I ( S 1 ; S k | X k 1 , Y k 1 ) ≤ ǫ I ( S 1 ; S k | Y k 1 ) ≤ ǫ � Neither inequality implies the other � FAIM does not imply forgetfulness � We have a sufficient condition for forgetfulness � Under it, ǫ decreases exponentially with λ 8/16
FAIM Does Not Imply Forgetfulness 1 2 � a , S j ∈ { 1 , 2 } a Y j = b , S j ∈ { 3 , 4 } b 3 4 I ( S 1 ; S k | Y k 1 ) �→ 0 9/16
Why Forgetfulness? � ( S i , X i , Y i ) forgetful if for any ǫ > 0 exists λ such that � I ( S 1 ; S k | X k 1 , Y k 1 ) ≤ ǫ k ≥ λ = ⇒ I ( S 1 ; S k | Y k 1 ) ≤ ǫ � Can show: for any k + 1 ≤ i ≤ N − k i − k , Y i + k 0 ≤ H ( X i | X i − 1 i − k ) − H ( X i | X i − 1 , Y N 1 ) ≤ 2 ǫ 1 Takeaway point Only a “window” surrounding i really matters 10/16
Slow Stage is Monopolarizing � FAIM-derived: ( X i , Y i ) derived from ( S i , X i , Y i ) such that P ( s i , x i , y i |{ s j , x j , y j } j < i ) = P ( s i , x i , y i | s i − 1 ) with S i finite-state, aperiodic, irreducible, Markov � Forgetful: for any ǫ > 0 there exists λ such that if k ≥ λ , I ( S 1 ; S k | X k 1 , Y k 1 ) ≤ ǫ I ( S 1 ; S k | Y k 1 ) ≤ ǫ Main Result (simplified) If process ( X i , Y i ) is FAIM-derived and forgetful, the slow stage is monopolarizing, with universal L , H (unrelated to process) 11/16
Slow Stage � Presented for the case | L | = | H | Level- n block � Transforms F 1 G 1 L n lateral f X N n 1 Y N n = ⇒ F N n 1 G N n F Ln G Ln 1 1 F Ln + 1 G Ln + 1 decode F i from G i transmitted received � Recursively defined M n medial � Parameters L 0 , M 0 N 0 = 2 L 0 + M 0 � Level 0 length: N n = 2 N n − 1 � Level n length: F Ln + Mn G Ln + Mn � Index types at level n : F Ln + Mn + 1 G Ln + Mn + 1 � First L n indices: L n lateral lateral F Nn G Nn � Middle M n indices: medial � Last L n indices: lateral 12/16
Slow Stage — Lateral Recursion Level- n block Level- ( n + 1 ) block L n lateral L n + 1 = 2 L n + 1 lateral U Q M n L n lateral M n + 1 = 2 ( M n − 1 ) F G L n lateral M n V R L n + 1 = 2 L n + 1 lateral L n lateral Level- n block � Lateral indices always remain lateral � Two medial indices become lateral 13/16
Slow Stage — Medial Recursion Level- n block lateral U Ln + 1 H L H � Two type of medial L indices: U Q � H � L H L � Alternating: H L H , L , H , L , . . . lateral � Two medial become lateral H L lateral: H L U L n + 1 , V L n + M n � Join H from one V R block with L from H L other H V Ln + Mn L lateral Level- n block 14/16
Slow Stage — Medial Recursion Level- n block medial ( n + 1 ) lateral H U Ln + 2 + L F 2 L n + 2 H � Two type of medial L indices: U Q � H � L H L � Alternating: H L H , L , H , L , . . . lateral � Two medial become lateral V Ln + 1 H F 2 L n + 3 L lateral: H L U L n + 1 , V L n + M n � Join H from one V R block with L from H L other H L lateral Level- n block 14/16
Slow Stage — Medial Recursion Level- n block medial ( n + 1 ) lateral H U Ln + 2 + L F 2 L n + 2 U Ln + 3 H F 2 L n + 5 � Two type of medial L indices: U Q � H � L H L � Alternating: H L H , L , H , L , . . . lateral � Two medial become lateral V Ln + 1 H F 2 L n + 3 V Ln + 2 + L F 2 L n + 4 lateral: H L U L n + 1 , V L n + M n � Join H from one V R block with L from H L other H L lateral Level- n block 14/16
Recommend
More recommend