universal algebra in hott
play

Universal Algebra in HoTT Andreas Lynge and Bas Spitters Aarhus - PowerPoint PPT Presentation

Universal Algebra in HoTT Andreas Lynge and Bas Spitters Aarhus University August 13, 2019 Introduction Universal algebra is a general study of algebraic structures. The results in universal algebra apply to all algebras, e.g. groups,


  1. Universal Algebra in HoTT Andreas Lynge and Bas Spitters Aarhus University August 13, 2019

  2. Introduction ‚ Universal algebra is a general study of algebraic structures. The results in universal algebra apply to all “algebras”, e.g. groups, rings, modules. ‚ We have formalized a part of universal algebra in the HoTT library for Coq, including the three isomorphism theorems. ‚ Based on the math-classes library. ‚ Type theoretic universal algebra often relies on setoids. ‚ We avoid setoids in the HoTT library, quotient sets are HITs.

  3. Group Example (Group) A group is an h-set G : Set with ‚ unit e : G ‚ multiplication ¨ : G Ñ G Ñ G ‚ inversion p´q ´ 1 : G Ñ G ‚ satisfying certain equations, e.g. x ¨ x ´ 1 “ e for all x : G .

  4. Group acting on a set Example (Group) A group is an h-set G : Set with ‚ unit e : G ‚ multiplication ¨ : G Ñ G Ñ G ‚ inversion p´q ´ 1 : G Ñ G ‚ satisfying certain equations, e.g. x ¨ x ´ 1 “ e for all x : G . Example (Group acting on a set) A group acting on a set is a group G and an h-set S with ‚ action α : G Ñ S Ñ S ‚ α p x ¨ y q “ α p x q ˝ α p y q ‚ α p e q “ id S

  5. Signature Definition (Signature) A signature σ : Signature consists of ‚ Sort p σ q : U ‚ Symbol p σ q : U ‚ for each u : Symbol p σ q , σ u : Sort p σ q ˆ List p Sort p σ qq .

  6. Algebra Definition (Signature) A signature σ : Signature consists of ‚ Sort p σ q : U ‚ Symbol p σ q : U ‚ for each u : Symbol p σ q , σ u : Sort p σ q ˆ List p Sort p σ qq . Definition (Algebra) An algebra A : Algebra p σ q for σ : Signature consists of ‚ for each s : Sort p σ q , A s : Set ‚ for each u : Symbol p σ q , u A : A s 1 Ñ A s 2 Ñ ¨ ¨ ¨ Ñ A s n , where p s 1 , r s 2 , . . . , s n sq : ” σ u .

  7. Example (Group acting on a set) A group G acting on a set S , ‚ unit e : G ‚ multiplication ¨ : G Ñ G Ñ G ‚ inversion p´q ´ 1 : G Ñ G ‚ action α : G Ñ S Ñ S , is an algebra A : Algebra p σ q for σ : Signature with ‚ Sort p σ q ” t g , s u ‚ Symbol p σ q ” t u , m , i , a u ‚ σ u ” p g , rsq , σ m ” p g , r g , g sq , σ i ” p g , r g sq , σ a ” p g , r s , s sq . Carriers A g : ” G and A s : ” S , and operations ‚ u A : A g is unit ‚ m A : A g Ñ A g Ñ A g is multiplication i A : A g Ñ A g is inversion ‚ a A : A g Ñ A s Ñ A s is the action. ‚

  8. Let A , B , C : Algebra p σ q .

  9. Homomorphism Let A , B , C : Algebra p σ q . Definition (Homomorphism) A homomorphism f : A Ñ B consists of ‚ f s : A s Ñ B s for all s : Sort p σ q ‚ f s t p u A p x 1 , . . . , x n qq “ u B p f s 1 p x 1 q , . . . , f s n p x n qq , for all u : Symbol p σ q .

  10. Isomorphism Let A , B , C : Algebra p σ q . Definition (Homomorphism) A homomorphism f : A Ñ B consists of ‚ f s : A s Ñ B s for all s : Sort p σ q ‚ f s t p u A p x 1 , . . . , x n qq “ u B p f s 1 p x 1 q , . . . , f s n p x n qq , for all u : Symbol p σ q . Definition (Isomorphism) An isomorphism is a homomorphism f : A Ñ B where f s : A s Ñ B s is an equivalence for all s : Sort p σ q .

  11. Isomorphic Let A , B , C : Algebra p σ q . Definition (Homomorphism) A homomorphism f : A Ñ B consists of ‚ f s : A s Ñ B s for all s : Sort p σ q ‚ f s t p u A p x 1 , . . . , x n qq “ u B p f s 1 p x 1 q , . . . , f s n p x n qq , for all u : Symbol p σ q . Definition (Isomorphism) An isomorphism is a homomorphism f : A Ñ B where f s : A s Ñ B s is an equivalence for all s : Sort p σ q . Definition (Isomorphic) Write A – B for there is an isomorphism A Ñ B .

  12. Isomorphic implies equal Theorem (Isomrophic implies equal) If A – B then A “ B. ‚ Coquand and Danielsson, Isomorphism is equality.

  13. Lemma Theorem (Isomrophic implies equal) If A – B then A “ B. ‚ Coquand and Danielsson, Isomorphism is equality. Lemma Suppose ‚ X , Y : Sort p σ q Ñ Set ‚ α : X s 1 Ñ ¨ ¨ ¨ Ñ X s n Ñ X t and β : Y s 1 Ñ ¨ ¨ ¨ Ñ Y s n Ñ Y t ‚ f : ś s X s » Y s ‚ f t p α p x 1 , . . . , x n qq “ β p f s 1 p x 1 q , . . . , f s n p x n qq . Then ś s X s “ Y s hkkikkj transport p λ Z . Z s 1 Ѩ¨¨Ñ Z sn Ñ Z t q p funext p ua ˝ f qq p α q “ β loooooooomoooooooon X “ Y

  14. Precategory of algebras Lemma (Precategory of algebras) There is a precategory σ - Alg of Algebra p σ q and homomorphisms, ‚ p 1 A q s ” λ x . x, s : Sort p σ q ‚ p gf q s ” g s ˝ f s , f : A Ñ B, g : B Ñ C

  15. Equal is equivalent to isomorphic Lemma (Precategory of algebras) There is a precategory σ - Alg of Algebra p σ q and homomorphisms, ‚ p 1 A q s ” λ x . x, s : Sort p σ q ‚ p gf q s ” g s ˝ f s , f : A Ñ B, g : B Ñ C Theorem (Equal is equivalent to isomorphic) The function p A “ B q Ñ p A – B q is an equivalence.

  16. Univalent category of algebras Lemma (Precategory of algebras) There is a precategory σ - Alg of Algebra p σ q and homomorphisms, ‚ p 1 A q s ” λ x . x, s : Sort p σ q ‚ p gf q s ” g s ˝ f s , f : A Ñ B, g : B Ñ C Theorem (Equal is equivalent to isomorphic) The function p A “ B q Ñ p A – B q is an equivalence. Theorem (Univalent category of algebras) The precategory σ - Alg is a univalent category. ‚ HoTT book, http://homotopytypetheory.org/book . ‚ Arhens and Lumsdaine, Displayed Categories.

  17. Congruence Definition (Congruence) A congruence on A is a family of mere equivalence relations Θ : ś s p A s Ñ A s Ñ Prop q where Θ s 1 p x 1 , y 1 q ˆ ¨ ¨ ¨ ˆ Θ s n p x n , y n q implies u A p x 1 , . . . , x n q , u A p y 1 , . . . , y n q ` ˘ Θ s t for all u : Symbol p σ q .

  18. Quotient algebra Definition (Congruence) A congruence on A is a family of mere equivalence relations Θ : ś s p A s Ñ A s Ñ Prop q where Θ s 1 p x 1 , y 1 q ˆ ¨ ¨ ¨ ˆ Θ s n p x n , y n q implies u A p x 1 , . . . , x n q , u A p y 1 , . . . , y n q ` ˘ Θ s t for all u : Symbol p σ q . Definition (Quotient algebra) Let Θ : ś s p A s Ñ A s Ñ Prop q be a congruence. The quotient algebra A { Θ consists of ‚ p A { Θ q s : ” A s { Θ s , the set-quotient ‚ operations u A { Θ ` ˘ ` u A p x 1 , . . . , x n q ˘ q 1 p x 1 q , . . . , q n p x n q “ q t , where q i : A s i Ñ A s i { Θ s i are the set-quotient constructors.

  19. Suppose Θ : ś s p A s Ñ A s Ñ Prop q is a congruence.

  20. Quotient homomorphism Suppose Θ : ś s p A s Ñ A s Ñ Prop q is a congruence. Lemma (Quotient homomorphism) There is a homomorphism ρ : A Ñ A { Θ , pointwise A s Ñ A s { Θ s .

  21. Quotient universal property Suppose Θ : ś s p A s Ñ A s Ñ Prop q is a congruence. Lemma (Quotient homomorphism) There is a homomorphism ρ : A Ñ A { Θ , pointwise A s Ñ A s { Θ s . Lemma (Quotient universal property) Precomposition with ρ : A Ñ A { Θ induces an equivalence p A { Θ Ñ B q » ř f : A Ñ B resp p f q , where resp p f q : ” ś ś ` ˘ Θ s p x , y q Ñ f s p x q “ f s p y q . s :Sort p σ q x , y : A s ρ Let f : A Ñ B such that resp p f q . Then there A { Θ A is a unique p : A { Θ Ñ B satisfying f “ pq . p f Coequalizers in σ - Alg are quotient algebras. B

  22. Product algebra Product algebra Let F : I Ñ Algebra p σ q . The product algebra Ś i F p i q has carriers p Ś i F p i qq s ” ś i p F p i qq s There are projection homomorphisms π j : Ś i F p i q Ñ F p j q . Products in σ - Alg are product algebras.

  23. Subalgebra Product algebra Let F : I Ñ Algebra p σ q . The product algebra Ś i F p i q has carriers p Ś i F p i qq s ” ś i p F p i qq s There are projection homomorphisms π j : Ś i F p i q Ñ F p j q . Products in σ - Alg are product algebras. Subalgebra Let P : ś s p A s Ñ Prop q such that, for any u : Symbol p σ q , P n ` 1 p u A p x 1 , . . . , x n qq , P s 1 p x 1 q ˆ ¨ ¨ ¨ ˆ P s n p x n q implies where p s 1 , r s 2 , . . . , s n ` 1 sq ” σ u . Then there is a subalgebra A & P with carriers p A & P q s ” ř x : A s P s p x q There exists an inclusion homomorphism p A & P q Ñ A . Equalizers in σ - Alg are subalgebras.

  24. First isomorphism theorem Theorem (First isomorphism/identification theorem) Let f : A Ñ B be a homomorphism. ‚ ker p f qp s , x , y q : ” ` ˘ f s p x q “ f s p y q is a congruence. ‚ inim p f qp s , y q : ” � ř x p f s p x q “ y q � is closed under operations, so it induces a subalgebra B & inim p f q of B. ‚ There exists an isomorphism A { ker p f q Ñ B & inim p f q .

  25. First identification theorem Theorem (First isomorphism/identification theorem) Let f : A Ñ B be a homomorphism. ‚ ker p f qp s , x , y q : ” ` ˘ f s p x q “ f s p y q is a congruence. ‚ inim p f qp s , y q : ” � ř x p f s p x q “ y q � is closed under operations, so it induces a subalgebra B & inim p f q of B. ‚ There exists an isomorphism A { ker p f q Ñ B & inim p f q . ‚ Therefore A { ker p f q “ B & inim p f q .

  26. The category of algebras is regular Theorem (First isomorphism/identification theorem) Let f : A Ñ B be a homomorphism. ‚ ker p f qp s , x , y q : ” ` ˘ f s p x q “ f s p y q is a congruence. ‚ inim p f qp s , y q : ” � ř x p f s p x q “ y q � is closed under operations, so it induces a subalgebra B & inim p f q of B. ‚ There exists an isomorphism A { ker p f q Ñ B & inim p f q . ‚ Therefore A { ker p f q “ B & inim p f q . Category σ - Alg is regular, ‚ f : A Ñ B image factorizes A Ñ B & inim p f q ã Ñ B ‚ images are pullback stable. ‚ σ - Alg is complete

Recommend


More recommend