unipolar plasma model of rf breakdown
play

Unipolar Plasma Model of RF Breakdown Z. Insepov, J. Norem 1) - PowerPoint PPT Presentation

Unipolar Plasma Model of RF Breakdown Z. Insepov, J. Norem 1) Purdue University, 2) Nanosynergy Inc Feb 12, 2014 "RF breakdown physics" sprint Outline Motivation - RF breakdown in cavities Calculation of electric field for real


  1. Unipolar Plasma Model of RF Breakdown Z. Insepov, J. Norem 1) Purdue University, 2) Nanosynergy Inc Feb 12, 2014 "RF breakdown physics" sprint

  2. Outline  Motivation - RF breakdown in cavities  Calculation of electric field for real surfaces  Experimental enhancement factor for dark current  Cluster field evaporation in high electric field  Unipolar (Schwirzke) plasma model development  Surface sputtering by ions  Atomistic model of non-Debye plasma  Plasma model of RF BD  Conclusions 2

  3. RF Breakdown examples Severe damage Moderate damage CLIC CERN, Izquierdo, 2008 NLC NLC [From the 2001 Report on the Next Linear Collider]

  4. Calculation of electric field for real surfaces

  5. FE m ulti-physics sim ulation • Comsol simulation : Solving Laplace’s equation for arbitrary geometry ∆ φ = 0 φ =  1 V  el ⋅ = E n 0 φ = 0 V  E  φ = 0 V ⋅ n = g 0 g φ = 1 V 2 µ m el

  6. Field Enhancem ent by tips  Comsol simulation vs analytical theory of field enhancement 2 µ m 1 µ m ρ =1nm ρ =10nm ρ =100 nm

  7. Field Enhancem ent by cones • Comsol simulation of field enhancement at sharp cones G. Arnau Izquierdo, 2008 β ~ 1000 1 µ m

  8. Enhancem ent at crack’s edges • Sharp tips, edges and corners of the cracks More exotic cracks can enhance the electric • can significantly enhance the electric field field too β ~ 100

  9. Triple junction E-fields • We have been modeling, cracks, junctions, edges and other shapes  Comsol simulation of field enhancement at triple crack junction 1 µ m β =140 9

  10. Experim ental enhancem ent factor obtained from dark current m easurem ents: β = 1 8 4

  11. Comparison with experiment X rays show that cavities break [Norem, PR STAB (2003)] down at E local ~ 7–10 GV/m Fowler-Nordheim field emission (1928) ( )   β 3 2 φ A ( E )  2  B = − A FN surf FN i ( E ) exp ,   φ β 2 surf m E   surf = × 6 2 A 1 . 54 10 eV A/(MV) FN 3 = 2 B 6830 MV/m(eV) FN φ = 4.6eV β – Local Field Enhancement β =184 11

  12. Cluster field evaporation – a result of a high local electric field

  13. W hy atom istic sim ulation? Flyura Djurabekova and Kai Nordlund, University of Helsinki β = β = 1.5 3.6 β = 6 CLIC RF Breakdown Workshop, CERN 2008

  14. Cluster field evaporation [Miller, Atom Probe Tomography (2000)] 14 12 Voltage (KV) 10 7.6 nm, 30×10 3 19 nm, 450×10 3 8 9.3 nm, 50×10 3 6 4 1×10 5 2×10 5 4×10 5 6×10 5 8×10 5 1×10 6 Single ion field evaporation : Ecr = 30 GV/m Figure shows abrupt discontinuities in the voltage vs. number of ions in a DC- field evaporation system and evidence for large clusters produced at field ion microscope tips. [Insepov Norem, Phys Rev STAB (2004)]

  15. Electric field initiates breakdow n • Surfaces contain grain boundaries, tips, oxides, dust particles • A strong electrostatic field enhancement can be generated • Maxwell stress includes electric forces acting on the tip • The chunks fill the near region of the vacuum Ionization by FN-electrons and • Coulomb explosion form plasma • Unipolar plasma model can explain triggering of the breakdown

  16. Crater form ation via field evaporation • A new mechanism of crater formation – pulling out a large area of the surface S. Yip, MIT 2014 (private communication)

  17. Unipolar ( Schw irzke) Plasm a m odel developm ent

  18. Double electric layer in plasm a Tokamak F. R. Schwirzke, SEM image of plasma damaged metal surface: Superposition of “younger” (10 µ m) and “older” IEEE Trans. on Plas. Sci., 19 , 690 (1991) craters (30-40 µ m).

  19. Unipolar arc breakdow n m odel Unipolar Arc Model Plasma   k T M   = B e i V ln , Plasma potential   π pl   2 e 2 m e Dark space V = Surface field pl E , λ s d 1 ε   2 V   λ = 0 pl Debye length   d 2   n e e Cavity surface V pl V pl ~ 100 V φ BD triggered by impact ionization • Neutrals accumulated in the dark space plasma sheath • Ionization of neutrals by FN-current • Percolation of dark space via ionization 0 z ~ 1-2 n m d • Crater formation via explosion

  20. Unipolar Arc m odel in linac Linac Plasma Heating occurs via ion bombardment. Plasma fueling: n ~ 10 25 m -3  Evaporation of surface atoms -  Tip explosion by high electric field + + + - + Plasma potential - - - - - -     - + + kT M + + =     U e ln i , + π -     f 2 e 2 m + e ε kT λ = 0 e , 2 D 2 n e e + e U ( ) λ D ~2 nm ≈ ≈ × + f 1 2 e E n kT 5 . 12 e + λ f e e D ≈ × 25 - 3 n 1 10 m + e ≈ ≈ kT 18 eV , U 50 V e f − λ ≈ × 9 2 10 m , D ≈ × λ d 1 . 5 c D hot spot Y ~10 U ≈ β ≈ × f V 10 E 5 10 λ f m surface D [Insepov, Norem, 2012] • Schwirzke model

  21. Self-sputtering by plasm a Coulomb explosion plasma of tips and fragments d ∼ 1.5λ D Self-sputtering is the main mechanism of plasma fueling

  22. Surface sputtering by ions  Sigmund’s theory – linear cascades, not good for heavy ions and low energies  Monte Carlo codes : binary collisions, not accurate at low energies  Empirical models based on MC – good for known materials  Molecular dynamics – time consuming but no limit for energies, ion masses, temperatures, dense cascades, thermal properties - can verify the OOPIC/VORPAL simulations

  23. Sputtering theory and m odels • Eckstein-Bohdansky’s model • Sigmund’s theory ( ) = Λ   2 Y ( E ) F E , 2 3       ( ) E E D = ε − −       th th Y ( E ) Qs 1  1  , n       3 1 0 . 0420   E E   Λ = = , π 2 − 4 NC U NU Q , E adjustable parameters , 0 s s th ( ) ( ) ( ) = α F E M M NS E M a ε = ε D 2 1 n 2 L E , ( - reduced energy) ( ) + − 2 M M Z Z e F E deposited energy, 1 2 1 2 D { } − − 1 2 = + 2 3 2 3 N atomic density, a 0 . 4685 Z Z A L 1 2 ( ) U - surface binding energy, ε + ε ( ) 3 . 441 ln 1 1 . 2288 s ε = ( ) TF ( ) s . − n ε + ε + ε ε − S E nuclear stopping power, 0 . 1728 6 . 882 1 . 708 n − C coefficien t. 0 Not applicable for light ion, high energy ions Not applicable for heavy ions (no electronic stopping power). C 0 , U s - adjustable parameter. Needs adjustable parameters. [P. Sigmund, Phys. Rev. B (1969)] [Bohdansky, NIMB B (1984)]

  24. Yam am ura’s em pirical m odel  Yamamura’s interpolation model based on Monte-Carlo code ( )  −  F E E = = D  th  Y ( E ) 0 . 042 1 NU  E  s ( ) ( )  −  α M M S E E 2 1 n  th  0 . 042 1 NU  E  s − N atomic density, U - surface binding energy, s ( ) − S E nuclear stopping power, n α − adjustable parameter, ( ) ( ) ( )  −  s α ε M M S E s E = × 2 1 n n  th  Y ( E ) 0 . 042 1 , ( ) ( ) ε + U s S E E   s n n  6 . 7 ≥ , M M ,   γ 1 2 =  ( ) E + th 1 5 . 7 M M  ≤ 1 2 , M M .  γ 1 2  4 M M γ = 1 2 . ( ) + 2 M M 1 2 No temperature dependence

  25. MD sim ulation of Copper self-sputtering at high T and E [Insepov et al, NIMB, 2010] • Self-sputtering is the mechanism for fueling unipolar surface plasma. • Unipolar model requires Y > 10 typical at low ion energies. MD predicts very high sputtering yields for high surface T and E . • • Erosion rates on the order of ~ 1 m/s. 25

  26. Atom istic m odel of non-Debye near-surface plasm a

  27. n-T Diagram for plasmas 0 1 2 10 3 4 5 6 10 7 8 Nonideality 10 10 10 10 10 10 10 28 28 parameter for 10 10 θ = 1 n e, cm -3 electrons 26 26 Quantum gas 10 10 π 1/3   2 = ε 4 n e 2 / Γ =  e a 24 24 e  10 10 F   3 kT 22 22 10 10 MD Number of 20 20 10 10 electrons in the 18 18 Debye sphere 10 10 π 3 ionization 4 r 16 16 = 10 10 D N n D e Classical gas 3 14 14 10 10 Γ = 1 12 12 Degeneracy 10 10 = N 10 parameter 10 10 D 10 10 T e , K θ = ε F kT / 8 8 10 10 0 1 2 10 3 4 5 6 10 7 8 10 10 10 10 10 10 10

  28. Density-Temperature Diagram Nonideality 0 1 2 10 3 4 5 6 10 7 8 10 10 10 10 10 10 10 parameter for 28 28 10 10 θ = electrons 1 n e, cm -3 26 26 Quantum gas π 1/3   10 10 2 4 n e Γ =  e  = ε 2   e / a 24 24 3 kT 10 10 F 22 22 MD 10 10 Number of 20 20 10 10 electrons in the 18 18 Debye sphere 10 10 π 3 ionization 4 r 16 16 = 10 10 D N n D e Particle-in-cell 3 14 14 10 10 = 12 12 N 100 10 Degeneracy 10 D parameter 10 10 10 10 T e , K θ = ε F kT / 8 8 10 10 0 1 2 10 3 4 5 6 10 7 8 10 10 10 10 10 10 10

Recommend


More recommend