understanding luminous infrared galaxies in the herschel
play

Understanding Luminous Infrared Galaxies in the Herschel Era Arp 84 - PowerPoint PPT Presentation

Understanding Luminous Infrared Galaxies in the Herschel Era Arp 84 David B. Sanders (sanders@ifa.hawaii.edu) Institute for Astronomy, University of Hawai`i Collaborators: Jason Chu (IfA), Kirsten Larson (Caltech/IPAC), Joseph Mazzarella


  1. Understanding Luminous Infrared Galaxies in the Herschel Era Arp 84 David B. Sanders (sanders@ifa.hawaii.edu) Institute for Astronomy, University of Hawai`i Collaborators: Jason Chu (IfA), Kirsten Larson (Caltech/IPAC), Joseph Mazzarella (Caltech/IPAC), Lisa Kewley (ANU)

  2. Understanding submm-selected LIRGs in the Herschel Era SMG20 – Durham – 8/01/17 Arp 84 David B. Sanders (sanders@ifa.hawaii.edu) Institute for Astronomy, University of Hawai`i Collaborators: Jason Chu (IfA), Kirsten Larson (Caltech/IPAC), Joseph Mazzarella (Caltech/IPAC), Lisa Kewley (ANU)

  3. Understanding Luminous Infrared Galaxies in the Herschel Era I . Z ~ 0 (PACS+SPIRE) The Herschel-GOALS atlas II. Z ~ 2.3 (BPT diagram) Herschel vs. MOSDEF selection

  4. Why Study Luminous IR Galaxies? • Hundreds of luminous infrared galaxies (LIRGs) first discovered in the 1980s. • They emit the bulk of their bolometric luminosities in the infrared: L IR = L (8-1000 μ m). – LIRG: 11 ≤ log( L IR / L ¤ ) < 12 – ULIRG: 12 ≤ log( L IR / L ¤ ) < 13 • Many are interacting/merging • (U)LIRGs much more common in the high- z universe (detected as SMGs). Ricci+ 2017

  5. • Consists of the 201 brightest galaxies in the Revised Bright Galaxy Sample (RBGS) with L IR ≥ 10 11 L ¤ . • GOALS is a statistically complete, flux-limited local sample of infrared luminous galaxies. • They represent a complete picture of galaxy evolution in the local universe. è Critical to study these galaxies in the FIR/submm, where they emit the bulk of their bolometric luminosity.

  6. I. Herschel -GOALS Observations • Entire GOALS sample imaged by PACS and SPIRE (PI: Sanders). • Photodetector Array Camera and Spectrometer (PACS) – 70 μ m è 5.6” beam FWHM – 100 μ m è 6.8” – 160 μ m è 11.4” • Spectral and Photometric Imaging Receiver (SPIRE) – 250 μ m è 18.1” Herschel PACS and SPIRE Transmission Curves 1.0 Normalized Response – 350 μ m è 25.2” 0.8 0.6 – 500 μ m è 36.6” 0.4 0.2 0.0 100 1000 Wavelength [ µ m] Chu+ 2017

  7. The Herschel -GOALS Atlas • Maps of all 201 GOALS systems IRAS F13564+3741 (Arp 84) 37.4890 70 µ m 100 µ m have been published for all six 37.4640 Declination Herschel bands in Chu et al. (2017). 37.4390 37.4140 • Aperture photometry measured for FOV = 100 Kpc 2 10 Kpc = 36.0" 37.3890 209.6991 209.6741 209.6491 209.6241 209.5991 +37:29:20.48 160 µ m 250 µ m every GOALS object: +37:27:50.49 – Total system fluxes. +37:26:20.50 – Component fluxes where possible. +37:24:50.50 • Very good signal to noise ratios: +37:23:20.51 58 m 41.79 s 13 h 58 m 35.80 s 58 m 29.80 s 58 m 47.79 s 58 m 23.80 s 350 µ m 500 µ m – PACS: Typical S/N ~10-20 – SPIRE: Typical S/N ~5-15 Data: http://irsa.ipac.caltech.edu/data/GOALS/galaxies/ Right Ascension

  8. Results: Infrared SEDs of (U)LIRGs (Chu+ 2017bc, in prep.) 11.00 < log(L IR /L Sun ) < 11.25 11.25 < log(L IR /L Sun ) < 11.50 11.50 < log(L IR /L Sun ) < 11.75 12 12 12 ν L ν [log L Sun ] 11 11 11 10 10 10 9 9 9 1 10 100 1000 1 10 100 1000 1 10 100 1000 λ [ µ m] 11.75 < log(L IR /L Sun ) < 12 12.00 < log(L IR /L Sun ) < 12.25 12.25 < log(L IR /L Sun ) 12 12 12 11 11 11 10 10 10 9 9 9 1 10 100 1000 1 10 100 1000 1 10 100 1000

  9. Results: Infrared SEDs of (U)LIRGs IRAS (Chu+ 2017bc, in prep.) 11.00 < log(L IR /L Sun ) < 11.25 11.25 < log(L IR /L Sun ) < 11.50 11.50 < log(L IR /L Sun ) < 11.75 N=64 N=58 N=38 12 12 12 ν L ν [log L Sun ] 11 11 11 10 10 10 9 9 9 1 10 100 1000 1 10 100 1000 1 10 100 1000 λ [ µ m] 11.75 < log(L IR /L Sun ) < 12 12.00 < log(L IR /L Sun ) < 12.25 12.25 < log(L IR /L Sun ) N=19 N=13 N=9 12 12 12 11 11 11 10 10 10 9 9 9 1 10 100 1000 1 10 100 1000 1 10 100 1000

  10. Results: Infrared SEDs of (U)LIRGs IRAS + Spitzer + WISE (Chu+ 2017bc, in prep.) 11.00 < log(L IR /L Sun ) < 11.25 11.25 < log(L IR /L Sun ) < 11.50 11.50 < log(L IR /L Sun ) < 11.75 N=64 N=58 N=38 12 12 12 ν L ν [log L Sun ] 11 11 11 10 10 10 9 9 9 1 10 100 1000 1 10 100 1000 1 10 100 1000 λ [ µ m] 11.75 < log(L IR /L Sun ) < 12 12.00 < log(L IR /L Sun ) < 12.25 12.25 < log(L IR /L Sun ) N=19 N=13 N=9 12 12 12 11 11 11 10 10 10 9 9 9 1 10 100 1000 1 10 100 1000 1 10 100 1000

  11. Results: Infrared SEDs of (U)LIRGs IRAS + Spitzer + WISE + Herschel (Chu+ 2017bc, in prep.) 11.00 < log(L IR /L Sun ) < 11.25 11.25 < log(L IR /L Sun ) < 11.50 11.50 < log(L IR /L Sun ) < 11.75 N=64 N=58 N=38 12 12 12 ν L ν [log L Sun ] 11 11 11 10 10 10 9 9 9 1 10 100 1000 1 10 100 1000 1 10 100 1000 λ [ µ m] 11.75 < log(L IR /L Sun ) < 12 12.00 < log(L IR /L Sun ) < 12.25 12.25 < log(L IR /L Sun ) N=19 N=13 N=9 12 12 12 11 11 11 10 10 10 9 9 9 1 10 100 1000 1 10 100 1000 1 10 100 1000

  12. Results: Infrared SEDs of (U)LIRGs • SED peak: Ø Becomes brighter, with Median Infrared SEDs of GOALS and KINGFISH Galaxies significant jump at highest L IR . 12.25 < log(L IR /L Sun ) 12.00 < log(L IR /L Sun ) < 12.25 Ø Peak is at shorter wavelengths 11.75 < log(L IR /L Sun ) < 12.00 12 11.50 < log(L IR /L Sun ) < 11.75 11.25 < log(L IR /L Sun ) < 11.50 with increasing L IR . 11.00 < log(L IR /L Sun ) < 11.25 10.50 < log(L IR /L Sun ) < 10.75 10.25 < log(L IR /L Sun ) < 10.50 10.00 < log(L IR /L Sun ) < 10.25 • 9.75 < log(L IR /L Sun ) < 10.00 FIR/sub-mm spectral index: 11 Ø GOALS: Nearly constant at all ν L ν [log L Sun ] L IR at λ ≥ 250 μ m, F ∝ ν 4.05±0.12 . 10 Ø Sub-LIRGs less steep. Ø x2 extra jump in luminosity at L IR at λ ≥ 60 μ m in highest bin. 9 • MIR (30-70 μ m) spectral index: Ø Relatively constant for all 8 1 10 100 1000 GOALS bins, except two λ [ µ m] (Chu+ 2017b, in prep.) highest bins.

  13. Results: Comparison to Model SEDs CE01 Median Infrared SEDs 12.25 < log(L IR /L Sun ) < 12.50 12.00 < log(L IR /L Sun ) < 12.25 12 • We compared our median 11.75 < log(L IR /L Sun ) < 12.00 11.50 < log(L IR /L Sun ) < 11.75 11.25 < log(L IR /L Sun ) < 11.50 11.00 < log(L IR /L Sun ) < 11.25 10.50 < log(L IR /L Sun ) < 10.75 10.25 < log(L IR /L Sun ) < 10.50 10.00 < log(L IR /L Sun ) < 10.25 11 ν L ν [log L Sun ] 9.75 < log(L IR /L Sun ) < 10.00 SEDs to the model predictions 10 of Chary & Elbaz (2001). 9 8 • CE01 produced SED templates 0.0 − 0.5 of galaxies as a function of IR − 1.0 log[ ν L ν /L IR ] luminosity using IRAS , ISO , − 1.5 − 2.0 and SCUBA data. − 2.5 − 3.0 1 10 100 1000 λ [ µ m] Chu et al., (2017b, in prep.)

  14. Results: Comparison C+17 to CE01 Model SEDs 9.75 < log(L IR /L Sun ) < 10.00 10.00 < log(L IR /L Sun ) < 10.25 N=10 N=8 12 12 ν L ν [log L Sun ] 11 11 10 10 9 9 • In the FIR/sub-mm, CE01 slightly underestimates 8 8 1 10 100 1000 1 10 100 1000 λ [ µ m] 10.25 < log(L IR /L Sun ) < 10.50 10.50 < log(L IR /L Sun ) < 10.75 flux in some bins, while in others it overestimates. N=7 N=6 12 12 11 11 10 10 9 9 • 8 8 In the MIR, CE01 matches the data well except in 1 10 100 1000 1 10 100 1000 11.00 < log(L IR /L Sun ) < 11.25 11.25 < log(L IR /L Sun ) < 11.50 N=64 N=58 highest L IR bins where it overestimates. 12 12 11 11 10 10 9 9 8 8 1 10 100 1000 1 10 100 1000 11.50 < log(L IR /L Sun ) < 11.75 11.75 < log(L IR /L Sun ) < 12 N=38 N=19 12 12 11 11 10 10 9 9 8 8 1 10 100 1000 1 10 100 1000 12.00 < log(L IR /L Sun ) < 12.25 12.25 < log(L IR /L Sun ) N=13 N=9 12 12 11 11 10 10 9 9 8 8 1 10 100 1000 1 10 100 1000 Chu et al., (2017b, in prep.)

  15. Results: Far-Infrared Colors • Plot of far-IR flux ratios as a function of L IR , including the following SED templates: Ø Chary & Elbaz (2001) Ø Rieke et al. (2009) • Comparison with models: Ø R09 predicts the KINGFISH galaxies well, except the 70/100 color. Ø CE01 predicts the KINGFISH galaxies well, except the 70/250 color. Ø Both models over-predict the 70/250 color for the GOALS galaxies. Chu et al., (2017b, in prep.)

  16. II. Optical Line Diagnostics of (U)LIRGs • Powerful tool to study a galaxy’s ISM conditions. • F irst put forth by Baldwin, Phillips, Terlevich (1981), hence “BPT” diagrams. • Uses optical emission line flux ratios to Increasing L IR separate starburst and AGN galaxies: • [O III ] λ 5007 / H β • [N II ] λ 6583 / H α • [S II ] λλ 6717, 6731 / H α • [O I ] λ 6300 / H α • Theoretical classification lines: • Kewley+ 2001 proposed first set of theoretical BPT classification lines for z =0. • Kewley+ 2013a produced theoretical classification lines up to z =3. Where do (U)LIRGs at z ~2.3 lie on the BPT diagram? Yuan et al. (2010)

  17. z ~ 2.3 Redshift Distribution Secure Redshifts on BPT Plot Secure Redshifts on BPT Plot 20 IR − Selected (MIR + FIR) Star − Forming (sBzK) All Galaxies Number of Galaxies 15 10 5 0 2.0 2.2 2.4 2.6 Redshift

  18. z ~ 2.3 Stellar Mass Distribution Stellar Mass Distribution on BPT Plot Stellar Mass Distribution on BPT Plot 20 IR − Selected (MIR + FIR) Star − Forming (sBzK) All Galaxies Number of Galaxies 15 10 5 0 8 9 10 11 12 log(M/M Sun )

Recommend


More recommend