ultra high energy cosmic ray observations
play

Ultra-High Energy Cosmic Ray Observations Karl-Heinz Kampert, - PowerPoint PPT Presentation

Ultra-High Energy Cosmic Ray Observations Karl-Heinz Kampert, University of Wuppertal e-mail: kampert@uni-wuppertal.de Present Status of Detectors The Issues Energy Spectrum CR Composition (p,Fe, , ) Arrival Directions


  1. Ultra-High Energy Cosmic Ray Observations Karl-Heinz Kampert, University of Wuppertal e-mail: kampert@uni-wuppertal.de • Present Status of Detectors • The Issues – Energy Spectrum – CR Composition (p,Fe, γ , ν ) – Arrival Directions • The Future • Concluding Remarks Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  2. UHECR Experiments analysis only • Understand the origin of CRs • Find the most power cosmic accelerators • Learn about CR acceleration AGASA • EHE particle physics operating HiRes-I & II construction Auger – Starting the planned Golden Hybrid Era – T elescope Array JEM-EUSO 2 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  3. Exposures 2007 10 4 Exposure (km 2 sr yr) 5165 km 2 sr yr ± 3% Auger-SD 0.8 full Auger year AGASA HiRes I mono 10 3 Auger-FD (1°-31°) (3°-17°; 9 yrs) Note: 10 2 Flat for Ground Arrays HiRes II mono (3°-31°, 6.5 yrs) growing for 10 Fluorescence Telescopes Auger SD 2007 Auger Hybrid 2007 HiRes-I Monocular 1 AGASA Yakutsk HiRes-II Monocular Haverah Park 1991 Flys Eye Stereo -1 10 Akeno HiRes Prototype/MIA Haverah Park 2003 -2 10 17 17.5 18 18.5 19 19.5 20 20.5 21 log 10 (E) (eV) 3 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  4. The HiRes Experiment • HiRes-I HiRes-I – 21 mirrors – 1 ring, full azimuth, 3°-17° elevation – Sample & Hold DAQ System – Took data: June 1997-April 2006 • HiRes-II HiRes-II – 42 mirrors – 2 rings, full azimuth, 3°-31° elevation – FADC DAQ System – Took data: Dec. 1999-April 2006 • Both: – 5.1 m 2 mirrors, 16x16 PMTs slide from D. Bergmann 4

  5. HiRes Monocular Spectra GZK effect ±3.3 Expect 39.9 , observe 13 ; 6.5x10 -6 (4.3 σ ) P=7x10 -7 (4.8 σ ) 3.26 ± 0.02 2.81 ± 0.03 5.1±0.7 10 18.65 eV 10 19.75 eV 5 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  6. HiRes Aperture & Error Table HiRes Energy Scale Uncertainties – Missing Energy 5% HiRes I vs – Energy Loss Rate 10% HiRes II – Fluorescence Yield 6% – Atmospheric Conditions 4% – Photometric Calibration 10% • Total Energy Scale Uncertainty 17% factor 70 per decade in E ! 10 4 10 3 exp. Resol. factor 10 between p & Fe 10 2 aperture (km 2 sr) Iron Depends on assumptions about models, mass and 10 spectrum slope Pure Iron Aperture 1 protons Pure Proton Aperture -1 10 17 17.5 18 18.5 19 19.5 log 10 (E) 6 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  7. Pierre Auger Observatory 1482 deployed 1436 filled 1364 taking data ~ 85% All 4 fluorescence buildings complete, each with 6 telescopes Final: 1600 tanks August 1, 2007 r o t c e t e D d i r b y H 7 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  8. The Auger Hybrid Observatory ...1600 Water Cherenkov tanks 24 fluorescence telescopes... 8 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  9. Quadruple Event 20 May 2007 E ~ 10 19 eV 9 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  10. Hybrid - Precise Shower Geometry first step towards precise energy, depth of maximum Arrival time at ground provided by the ^ . S Shower Detector Plane SD, removes degeneracy in the FD S i geometry fit shower � i � 0 - � i prop t 0 � i R p � 0 t i � i FD t n o r f r e w o h s e n a l P d n u o r G Get T 0 from SD tank! Geometry uncertainties shrink! 10 Karl-Heinz Kampert TAUP 2007, Sendai (Japan)

  11. The Power of Hybrid Hybrid SD-Only FD-only Angular Resolution ~ 0.2° ~ 1 - 2° ~ 3 - 5° Aperture Flat Flat growing model ind. model ind. model depend. Energy model ind. model dep. model ind. The combination is more than the sum of the individuals ! 11 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  12. FD-mono-Uncertainties: HiRes vs Auger Auger HiRes Fluorescence Yield 14% 6% 11,6 { Energy loss rate 10% p, T, & humidity effects 7% 4% on yield Photometric Calibration 9,5% 10% Invisible Energy 4% 5% Reconstruction 10% ? Total 21% 17% if reconstruction uncertainty is ignored: 19 % Note: this causes an integral flux uncertainty ( γ =3.0) of: 46 % 37 % (on top of effect of acceptance uncertainty) 12 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  13. FD energy calibration Fluorescence yield is at present the dominant error contribution also: Auger uses Nagano et al, HiRes uses Kakimoto et al. New (better) data will become available from: AIRFLY using test beam at DAΦNE and elsewhere measuring p, T, and humidity dependence of abs. yield FLASH using test beam at SLAC MACFLY using CERN-SPS test beam Data on abs. yields expected to be released Goal: reach 1 % level at workshop in Spain next week 13 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  14. FD Systematics by Interaction Models Drescher et al.; Astropart. Phys. 21 (2004) 87 FD: energy obtained from integral QGSJet & SIBYLL agree within a few percent Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  15. SD Systematics by Interaction Models Drescher et al.; Astropart. Phys. 21 (2004) 87 Effect of High-Energy Interaction Model : ~30 less μ ‘s Sibyll / QGSJet (Gheisha) in QGSJet ~ 30 % effect to E GHEISHA produces Effect of Low-Energy too many pions Interaction Model: GHEISHA & FLUKA / UrQMD ~ 10-20 % effect to E Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  16. Auger: SD Calibration by FD 4·10 19 eV Nagano et al. FY used Surface Detector σ (E FD -E SD )= 19% ... improves as energy increases ! 387 hybrid events Fluorescence Det. Energy 16 Karl-Heinz Kampert TAUP 2007, Sendai (Japan)

  17. Energy Spectrum 17 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  18. Auger E-Spectrum ( Θ < 60°) Pierre Auger Collab. @ ICRC 2007 E[eV] 2 � 10 19 3 � 10 19 3 � 10 18 10 19 10 20 2 � 10 20 lg(J/(m -2 sr -1 s -1 eV -1 )) -31 4128 Exp Obs Slope = -2.62 ± 0.03 2450 >10 19.6 132 ± 9 51 1631 -32 1185 > 10 20 30 ± 2.5 2 761 560 significance = 6 σ 367 284 -33 178 125 -34 79 54 25 -35 14 Exposures Auger: 5165 km 2 yr sr 5 5 -36 AGASA: 1619 km 2 yr sr HiRes: ~ 5000 km 2 yr sr 1 1 only statistical errors are shown -37 system: 6 % stat. + 22% syst. 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 20.2 20.4 lg(E/eV) Karl-Heinz Kampert TAUP 2007, Sendai (Japan)

  19. Energy Spectra: Comparison 25 log(J(E)*E 3 (/m 2 s sr eV -2 ) 24.6 24.2 23.8 Auger (2007) HR-I (mono) HR-II (mono) AGASA 23.4 23 18 18.5 19 19.5 20 20.5 log(E/eV) 19 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  20. Energy Spectra: Comparison 25 log(J(E)*E 3 (/m 2 s sr eV -2 ) Energy of AGASA scaled down by 15% 24.6 24.2 Energy of Auger scaled up by 15% 23.8 Auger (2007), E*1.15 HR-I (mono) HR-II (mono) Remember: AGASA 23.4 Auger and HiRes quote uncertainties in E of ~ 20% 23 18 18.5 19 19.5 20 20.5 log(E/eV) 20 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  21. Auger Spectrum & Source Distr. Test of Berezinsky’s e + e - dip model Auger 2007 24.5 eV 2 ]) - 4.1 ± 0.4 -2.62 ± 0.03 -3.30 ± 0.06 log(JxE 3 [m 2 s 1 19.55 24 18.65 Strong source evolution ~ (1+z) 5 �฀฀฀฀� source ~ 2.3 23.5 Uni form source ~ � source ~ 2.55 Fitting dip-model (Berezinsky et al.) can GZK e ff ect is modified by 23 describe E-spectra... • E-distribution of source 18 18.5 19 19.5 20 ... as ankle model can do • source local overdensity/deficit log(E [eV]) ... and mixed model • di ff erent values of E max 21 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  22. Composition 22 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  23. Ankle: Measurement of composition is crucial ! dip model onset EG CRs p + γ CMB → p + e + e − Allard, Olinto, Parizot; astro-ph/00703633 Supernovae ? heavy p-dom. 23 Karl-Heinz Kampert TAUP 2007, Sendai (Japan)

  24. Mass from X max observations Pierre Auger Collab. @ ICRC 2007 ] Auger 2007 2 > [g/cm 850 800 syst. err. max 30 74 proton <X 13 750 114 40±4 g/cm 2 307 185 272 241 402 325 489 700 410 454 2 71±5 g/cm 511 QGSJETII-03 QGSJETII-03 278 QGSJET01 QGSJET01 650 SIBYLL2.1 SIBYLL2.1 iron EPOS1.6 EPOS1.6 18 19 10 10 E [eV] Straight line fit of elongation rate: P < 3% Systematic error of X max : <15 g/cm2 @ <10 18 eV; < 12 g/cm 2 @ > 10 18 eV 24 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  25. Mass from X max observations ] 2 Auger 2007 > [g/cm 850 HiRes 2007 800 max proton <X 750 . d l e o d m o m - 700 p - e i d l k n a QGSJETII-03 QGSJETII-03 QGSJET01 QGSJET01 650 SIBYLL2.1 SIBYLL2.1 iron EPOS1.6 EPOS1.6 18 19 10 10 E [eV] Elongation rate will be the most sensitive tool to setle quest about G-EG-Transition 25 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  26. UHE Photons ? Expected by Top-Down models e.g.: S uper H eavy D ark M atter fit to AGASA 100 Bottom up Protons j(E) E 2 [eV cm -2 s -1 sr -1 ] AGASA Data 10 M H D S m o f r γ p from SHDM 1 0.1 0.01 1e+19 1e+20 1e+21 E [eV] Gelmini, et al, astro-ph/0506128 26 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

Recommend


More recommend