ultra fast asynchronous rumor spreading
play

Ultra-Fast Asynchronous Rumor Spreading Ali Pourmiri - PowerPoint PPT Presentation

Ultra-Fast Asynchronous Rumor Spreading Ali Pourmiri alipourmiri@gmail.com University of Isfahan 17 April 2019 IPMCCC19 Ali (Isfahan) Rumor Spreading 17 April 1 / 53 Push Protocol (Synchronous) Demers, Gealy, Greene, Hauser, Irish,


  1. Ultra-Fast Asynchronous Rumor Spreading Ali Pourmiri alipourmiri@gmail.com University of Isfahan 17 April 2019 IPMCCC’19 Ali (Isfahan) Rumor Spreading 17 April 1 / 53

  2. Push Protocol (Synchronous) Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods’87 1. The ground is a simple connected graph. 2. At time 0, one vertex knows a rumour. 3. At each time-step 1 , 2 , . . . , every informed vertex tells the rumour to a random neighbour. Ali (Isfahan) Rumor Spreading 17 April 2 / 53

  3. Push Protocol (Synchronous) Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods’87 1. The ground is a simple connected graph. 2. At time 0, one vertex knows a rumour. 3. At each time-step 1 , 2 , . . . , every informed vertex tells the rumour to a random neighbour. Remark 1. Informed vertex may call a neighbour in consecutive steps. Remark 2. If a vertex receives the rumour at time t , it starts passing it from time t + 1. Ali (Isfahan) Rumor Spreading 17 April 2 / 53

  4. Push Protocol (Synchronous) Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods’87 1. The ground is a simple connected graph. 2. At time 0, one vertex knows a rumour. 3. At each time-step 1 , 2 , . . . , every informed vertex tells the rumour to a random neighbour. Remark 1. Informed vertex may call a neighbour in consecutive steps. Remark 2. If a vertex receives the rumour at time t , it starts passing it from time t + 1. Spread Time: the first time everyone knows the rumour. Ali (Isfahan) Rumor Spreading 17 April 2 / 53

  5. Application: distributed computing Ali (Isfahan) Rumor Spreading 17 April 3 / 53

  6. Application: distributed computing Rumour spreading advantages: � Simplicity, locality, no memory � Scalability, reasonable link loads � Robustness Ali (Isfahan) Rumor Spreading 17 April 3 / 53

  7. Example: a path Ali (Isfahan) Rumor Spreading 17 April 4 / 53

  8. Example: a path informTime ( 0 ) = 0 Ali (Isfahan) Rumor Spreading 17 April 4 / 53

  9. Example: a path informTime ( 0 ) = 0 informTime ( 1 ) = 1 Ali (Isfahan) Rumor Spreading 17 April 5 / 53

  10. Example: a path informTime ( 0 ) = 0 informTime ( 1 ) = 1 informTime ( 2 ) = 1 + Geo ( 1 / 2 ) Ali (Isfahan) Rumor Spreading 17 April 6 / 53

  11. Example: a path informTime ( 0 ) = 0 informTime ( 1 ) = 1 informTime ( 2 ) = 1 + Geo ( 1 / 2 ) informTime ( 3 ) = 1 + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) Ali (Isfahan) Rumor Spreading 17 April 7 / 53

  12. Example: a path informTime ( 0 ) = 0 informTime ( 1 ) = 1 informTime ( 2 ) = 1 + Geo ( 1 / 2 ) informTime ( 3 ) = 1 + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) informTime ( 4 ) = 1 + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) Ali (Isfahan) Rumor Spreading 17 April 8 / 53

  13. Example: a path informTime ( 0 ) = 0 informTime ( 1 ) = 1 informTime ( 2 ) = 1 + Geo ( 1 / 2 ) informTime ( 3 ) = 1 + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) informTime ( 4 ) = 1 + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) E [ Spread Time ] = 1 + 3 × 2 = 7 Ali (Isfahan) Rumor Spreading 17 April 9 / 53

  14. Example: a path informTime ( 0 ) = 0 informTime ( 1 ) = 1 informTime ( 2 ) = 1 + Geo ( 1 / 2 ) informTime ( 3 ) = 1 + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) informTime ( 4 ) = 1 + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) E [ Spread Time ] = 1 + 3 × 2 = 7 = 2 n − 3 Ali (Isfahan) Rumor Spreading 17 April 10 / 53

  15. ❧♥ Example: a star Ali (Isfahan) Rumor Spreading 17 April 11 / 53

  16. ❧♥ Example: a star When k + 1 vertices are informed and n − 1 − k uninformed, after E [ Geo ( n − k − 1 n − 1 n − 1 )] = n − 1 − k more rounds a new vertex will be informed. Ali (Isfahan) Rumor Spreading 17 April 11 / 53

  17. Example: a star When k + 1 vertices are informed and n − 1 − k uninformed, after E [ Geo ( n − k − 1 n − 1 n − 1 )] = n − 1 − k more rounds a new vertex will be informed. E [ Spread Time ] = n − 1 n − 1 + n − 1 n − 2 + · · · + n − 1 + n − 1 ≈ n ❧♥ n 2 1 Ali (Isfahan) Rumor Spreading 17 April 11 / 53

  18. Improving the protocol Uninformed vertices ask the informed ones... Ali (Isfahan) Rumor Spreading 17 April 12 / 53

  19. Push-Pull Protocol (Synchronous) Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods’87 1. The ground is a simple connected graph. 2. At time 0, one vertex knows a rumour. 3. At each time-step 1 , 2 , . . . , every informed vertex sends the rumour to a random neighbour (PUSH); and every uninformed vertex queries a random neighbour about the rumour (PULL). Ali (Isfahan) Rumor Spreading 17 April 13 / 53

  20. Push-Pull Protocol (Synchronous) Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods’87 1. The ground is a simple connected graph. 2. At time 0, one vertex knows a rumour. 3. At each time-step 1 , 2 , . . . , every informed vertex sends the rumour to a random neighbour (PUSH); and every uninformed vertex queries a random neighbour about the rumour (PULL). Remark 1. Vertices may call the same neighbour in consecutive steps. Remark 2. If a vertex receives the rumour at time t , it starts passing it from time t + 1. Spread Time: the first time everyone knows the rumour. Ali (Isfahan) Rumor Spreading 17 April 13 / 53

  21. Example: a star push protocol: n ❧♥ n rounds push-pull protocol: 1 or 2 rounds Ali (Isfahan) Rumor Spreading 17 April 14 / 53

  22. Example: a path Ali (Isfahan) Rumor Spreading 17 April 15 / 53

  23. Example: a path informTime ( 0 ) = 0 Ali (Isfahan) Rumor Spreading 17 April 15 / 53

  24. Example: a path informTime ( 0 ) = 0 informTime ( 1 ) = 1 Ali (Isfahan) Rumor Spreading 17 April 16 / 53

  25. Example: a path informTime ( 0 ) = 0 informTime ( 1 ) = 1 informTime ( 2 ) = 1 + ♠✐♥ { Geo ( 1 / 2 ) , Geo ( 1 / 2 ) } = 1 + Geo ( 3 / 4 ) Ali (Isfahan) Rumor Spreading 17 April 17 / 53

  26. Example: a path informTime ( 0 ) = 0 informTime ( 1 ) = 1 informTime ( 2 ) = 1 + Geo ( 3 / 4 ) informTime ( 3 ) = 1 + Geo ( 3 / 4 ) + Geo ( 3 / 4 ) Ali (Isfahan) Rumor Spreading 17 April 18 / 53

  27. Example: a path informTime ( 0 ) = 0 informTime ( 1 ) = 1 informTime ( 2 ) = 1 + Geo ( 3 / 4 ) informTime ( 3 ) = 1 + Geo ( 3 / 4 ) + Geo ( 3 / 4 ) informTime ( 4 ) = 1 + Geo ( 3 / 4 ) + Geo ( 3 / 4 ) + 1 Ali (Isfahan) Rumor Spreading 17 April 19 / 53

  28. Example: a path informTime ( 0 ) = 0 informTime ( 1 ) = 1 informTime ( 2 ) = 1 + Geo ( 3 / 4 ) informTime ( 3 ) = 1 + Geo ( 3 / 4 ) + Geo ( 3 / 4 ) informTime ( 4 ) = 1 + Geo ( 3 / 4 ) + Geo ( 3 / 4 ) + 1 E [ Spread Time ] = 2 + 2 × 4 / 3 = 14 / 3 Ali (Isfahan) Rumor Spreading 17 April 20 / 53

  29. Example: a path informTime ( 0 ) = 0 informTime ( 1 ) = 1 informTime ( 2 ) = 1 + Geo ( 3 / 4 ) informTime ( 3 ) = 1 + Geo ( 3 / 4 ) + Geo ( 3 / 4 ) informTime ( 4 ) = 1 + Geo ( 3 / 4 ) + Geo ( 3 / 4 ) + 1 E [ Spread Time ] = 2 + 2 × 4 / 3 = 14 / 3 = 4 3 n − 2 ( versus 2 n − 3 for push ) Ali (Isfahan) Rumor Spreading 17 April 21 / 53

  30. ❧♦❣ ❧♦❣ ♠❛① ❧♦❣ ❧♦❣ Known results � on complete graph push: ❧♦❣ 2 n + ❧♥ n + o ( ❧♦❣ n ) push-pull: ❧♦❣ 3 n + o ( ❧♦❣ n ) Ali (Isfahan) Rumor Spreading 17 April 22 / 53

  31. ❧♦❣ ♠❛① ❧♦❣ ❧♦❣ Known results � on complete graph push: ❧♦❣ 2 n + ❧♥ n + o ( ❧♦❣ n ) push-pull: ❧♦❣ 3 n + o ( ❧♦❣ n ) � Barabasi-Albert preferential attachment graph has Spread Time Θ ( ❧♦❣ n ) , PUSH alone has Spread Time poly ( n ) . Ali (Isfahan) Rumor Spreading 17 April 22 / 53

  32. ♠❛① ❧♦❣ ❧♦❣ Known results � on complete graph push: ❧♦❣ 2 n + ❧♥ n + o ( ❧♦❣ n ) push-pull: ❧♦❣ 3 n + o ( ❧♦❣ n ) � Barabasi-Albert preferential attachment graph has Spread Time Θ ( ❧♦❣ n ) , PUSH alone has Spread Time poly ( n ) . � Random graphs with power-law expected degrees (a.k.a. the Chung-Lu model) with exponent ∈ ( 2 , 3 ) has Spread Time Θ ( ❧♦❣ n ) . Ali (Isfahan) Rumor Spreading 17 April 22 / 53

  33. Known results � on complete graph push: ❧♦❣ 2 n + ❧♥ n + o ( ❧♦❣ n ) push-pull: ❧♦❣ 3 n + o ( ❧♦❣ n ) � Barabasi-Albert preferential attachment graph has Spread Time Θ ( ❧♦❣ n ) , PUSH alone has Spread Time poly ( n ) . � Random graphs with power-law expected degrees (a.k.a. the Chung-Lu model) with exponent ∈ ( 2 , 3 ) has Spread Time Θ ( ❧♦❣ n ) . � If Φ is Cheeger constant (conductance) and α is the vertex expansion (vertex isoperimetric number), Spread Time ≤ C ♠❛① { Φ − 1 ❧♦❣ n , α − 1 ❧♦❣ 2 n } . Ali (Isfahan) Rumor Spreading 17 April 22 / 53

  34. Key Idea : rigorously analyze the size of informed nodes until time t , I t .

  35. Key Idea : rigorously analyze the size of informed nodes until time t , I t . Examples: complete graphs, G ( n , p ) I t + 1 ∼ ( 1 + c ) I t

  36. Key Idea : rigorously analyze the size of informed nodes until time t , I t . Examples: complete graphs, G ( n , p ) I t + 1 ∼ ( 1 + c ) I t Key Idea: efficient connectors facilitate the communication between large degree nodes

Recommend


More recommend