ui
play

UI EE529 Static Transfer Switch Lecture 30 Switching model - PDF document

UI EE529 Static Transfer Switch Lecture 30 Switching model Measurements and Control Examples References: Look at Panel Session Archive and Custom Power Technology Development list at: http://grouper.ieee.org/groups/1409/


  1. UI EE529 Static Transfer Switch Lecture 30  Switching model  Measurements and Control  Examples  References: Look at Panel Session Archive and Custom Power Technology Development list at: » http://grouper.ieee.org/groups/1409/ » IEEE/PES Distribution Custom Power Task Force Distribution Series Compensation 1 Spring 2017 UI EE529 Static Transfer Switch Lecture 30 Preferred Backup System System Sensitive Load Distribution Series Compensation 2 Spring 2017 1

  2. UI EE529 Static Transfer Switch Lecture 30  Fire thyristors continually on preferred  Fire thyristors continually on preferred source » No phase delay » Synchronize on the current  Continually measure voltage (PLL or other y g ( scheme) and track voltage magnitude  Stop gating when sag detected Distribution Series Compensation 3 Spring 2017 UI EE529 Static Transfer Switch Lecture 30  Gate thyristors on alternate source when  Gate thyristors on alternate source when stop on preferred source  Won’t clear first source until natural current zeros » Fast detection of sag is key g y » Assumes generally don’t see a sag on two separate distribution feeders very often Distribution Series Compensation 4 Spring 2017 2

  3. UI EE529 Modeling the STS Lecture 30  Type 11 switches for the devices  Type 11 switches for the devices  Synchronization and gate pulse generation  Magnitude and phase calculation Distribution Series Compensation 5 Spring 2017 UI EE529 Example Case Lecture 30  Use PLL defined earlier for » Sychronization » Computing magnitude of phase A voltage  Identify sag based on this magnitude compared to a reference level  Check phase angle difference between Ch k h l diff b t sources before transfer Distribution Series Compensation 6 Spring 2017 3

  4. UI EE529 Example Case Lecture 30 Preferred Source Voltage 12 [kV] 8 4 0 -4 -8 Alternate Source Voltage 12 [kV] -12 8 0 10 20 30 40 50 60 70 [ms] 80 (file sts2.pl4; x-var t) v:STSLA v:STSLB v:STSLC 4 0 -4 -8 -12 0 10 20 30 40 50 60 70 80 [ms] (file sts2.pl4; x-var t) v:STSRA v:STSRB v:STSRC Distribution Series Compensation 7 Spring 2017 UI EE529 Example Continued Lecture 30 Preferred Source Current Load Voltage 40 12 [A] [kV] 30 8 20 4 10 0 0 -10 -4 -20 -8 -30 -12 -40 0 10 20 30 40 50 60 70 80 0 15 30 45 60 75 90 [ms] [ms] (file sts2.pl4; x-var t) v:LOADA v:LOADB v:LOADC (file sts2.pl4; x-var t) c:BUS1LA-STSLA c:BUS1LB-STSLB c:BUS1LC-STSLC Alternate Source Current 50 [A] 35 20 5 -10 -25 Distribution Series Compensation 8 Spring 2017 -40 0 10 20 30 40 50 60 70 80 [ms] (file sts2.pl4; x-var t) c:BUS2RA-STSRA c:BUS2RB-STSRB c:BUS2RC-STSRC 4

  5. UI EE529 Example Continued Lecture 30 Firing Permission for Main Sw itches 1.1 0.8 0.5 0 5 0.2 -0.1 -0.4 Magnitude Calculation--Left Source -0.7 12 *10 3 -1.0 0 15 30 45 60 75 [ms] 90 10 (file sts2.pl4; x-var t) t: TRANS 8 6 4 2 0 0 10 20 30 40 50 60 70 80 [ms] (file sts2.pl4; x-var t) t: MAGNL Distribution Series Compensation 9 Spring 2017 UI EE529 Unbalanced Faults Lecture 30 Phase B to Ground Phase A to Ground 12 12 *10 3 *10 3 10 10 8 8 6 6 4 4 2 2 0 0 0 10 20 30 40 50 60 70 80 [ms] 0 10 20 30 40 50 60 70 80 [ms] (file sts2.pl4; x-var t) t: MAGNL (file sts2.pl4; x-var t) t: MAGNL B-C to Ground 12 *10 3 10 8 6 4 2 0 0 10 20 30 40 50 60 70 80 [ms] (file sts2.pl4; x-var t) t: MAGNL Distribution Series Compensation 10 Spring 2017 5

  6. UI EE529 ATPDraw Circuit Lecture 30 GT1RA GT1LA I I I I GT2LA GT2RA GT1LB GT1RB LOAD V I GT2LB GT2RB GT1LC GT1RC GT2LC GT2RC Distribution Series Compensation 11 Spring 2017 UI EE529 Sag Detection Lecture 30 Sag Detection Logic g g Convert to components MAGL x T VLOW F T x y MAGL OUTOLL y MAGR F T x T MAGR x y VLOW VMINOK y VMINOK INTOLR T T 0.75 pu 0.9 pu TFLATC ANGMIN T T 0.5 15 deg Distribution Series Compensation 12 Spring 2017 6

  7. UI EE529 Transfer Qualification Lecture 30 Transfer Logic ONE8T x x T ANGLR T y x + |x| PI * y + ANGDIF * -360 x THETAR + + x y K - - y POS180 THETAL * -360 x POS180 NEG180 NEG180 x y y K y T T Distribution Series Compensation 13 Spring 2017 UI EE529 Transfer Qualification Lecture 30 ANGMIN TRANSF x PLUS1 T + x y Two - y OUTOLL K INTOLR TRANSF TFLATC ZERO x T LEFTOK MINUS1 x y G u y DELAYT 58 Distribution Series Compensation 14 Spring 2017 7

  8. UI EE529 Control Right Side Lecture 30 TFLATC TFLATC x TRIGA TFLATC x y BUS1LA x TRIGA |x| MINUS1 TRTA y x T T G u RAOK x y T 58 LEFTOK ZERO RFIRA y 54 TRIGB TFLATC TFLATC x MINUS1 TRTB x T x y G u RBOK x BUS1LB TRIGB |x| x y y 58 ZERO RFIRB y 54 T LEFTOK TRIGC TFLATC TFLATC x MINUS1 TRTC x T x y x y G u G u RCOK RCOK x BUS1LC TRIGC |x| x y y 58 ZERO RFIRC y 54 T LEFTOK Distribution Series Compensation 15 Spring 2017 UI EE529 Firing Circuit Lecture 30 RFIRA GT1RA GT2RA GT2RA LEFTOK GT2LA LEFTOK GT1LA RFIRA * * * T * T x T VARSYN T VALSYN x x y x y ZERO y ZERO y RFIRB GT1RB GT2LB GT2RB LEFTOK RFIRB LEFTOK GT1LB * * * T * T T VBRSYN x T VBLSYN x x y x y ZERO y ZERO y RFIRC GT1RC LEFTOK GT2LC GT2RC LEFTOK LEFTOK GT1LC GT1LC RFIRC RFIRC * * * T * T T VCRSYN x x T VCLSYN x y x y ZERO y ZERO y Distribution Series Compensation 16 Spring 2017 8

  9. UI EE529 Lecture 29 M d li Modeling and Analysis of a d A l i f Flywheel Energy Storage System with a Power Converter Interface Series Compensation Fall 2003 UI Static Series Compensator EE529 Lecture 30 with Stored Energy Supply  Correct oltage sags seen b critical loads  Correct voltage sags seen by critical loads  Isolate loads from the faulted system  Respond before loads trip  Presently slow protection and slow breakers  Scheme that can be implemented with S h th t b i l t d ith present day technology Distribution Series Compensation 18 Spring 2017 9

  10. UI EE529 Storing Energy Lecture 30  Chemical Energy (Batteries)  Electrostatic Energy (Ultracapacitors)  Electromagnetic Energy (SMES coil)  Kinetic Energy (Flywheels) Ki ti E (Fl h l ) Distribution Series Compensation 19 Spring 2017 UI EE529 Advantages of Flywheel Lecture 30  Low cost  High power density  Greater number of charge-discharge cycles  Longer life  Longer life Distribution Series Compensation 20 Spring 2017 10

  11. UI EE529 Energy Stored in Flywheel Lecture 30 1   2  E 2 I  I is moment of inertia  I is moment of inertia   is angular velocity Distribution Series Compensation 21 Spring 2017 UI EE529 Types of Flywheel Lecture 30  High Speed Hi h S d » use high angular velocity » vacuum with magnetic bearings  Low Speed » use large inertia Distribution Series Compensation 22 Spring 2017 11

  12. UI EE529 Basic Circuit Diagram Lecture 30 DVR Voltage Supply Voltage + = Load Voltage Distribution Series Compensation 23 Spring 2017 UI EE529 FESS single line diagram Lecture 30 M Distribution Series Compensation 24 Spring 2017 12

  13. UI EE529 Method of Operation Lecture 30  Charge mode g » energy flows from the power system to the flywheel » increasing flywheel speed to rated  Floating Mode » at rated speed only supply energy to overcome losses  Discharge mode » energy flows from the flywheel to the shipboard system » decreasing flywheel speed Distribution Series Compensation 25 Spring 2017 UI EE529 FESS Modeling Lecture 30 EMTDC Models EMTDC M d l  Field oriented control AC drive model  Static series compensator model  Laboratory version in near future Distribution Series Compensation 26 Spring 2017 13

  14. UI EE529 Field Oriented Control Lecture 30 AC Drive M Field Oriented Control AC Drive Distribution Series Compensation 27 Spring 2017 UI EE529 Static Series Compensator Lecture 30 M Static Series Compensator Distribution Series Compensation 28 Spring 2017 14

  15. UI Field Oriented Control EE529 Lecture 30 AC Drive  Induction machine model  Indirect field oriented controller  Space vector PWM pulse generator  S t PWM l t Distribution Series Compensation 29 Spring 2017 Basic Voltage UI EE529 Source Converter Lecture 30 +  6 switches 1 5 3  8 combinations Vdc A B C  6 active vectors 2 4 6  2 zero vectors - Distribution Series Compensation 30 Spring 2017 15

  16. UI Space Vector PWM Pulse EE529 Generator Model Lecture 30     sin  V s            T 1 3 T z II    V dc  3 III I   V s        sin    T 2 3 T z  V dc  IV VI   V   T 0 T z T 1 T 2 Distribution Series Compensation 31 Spring 2017 UI EE529 Space Vector PWM Pulses Lecture 30 Firing Pulse for IGBT-1 /Low) 1.0 Output (High/ -0.1 1.363 1.370 1.377 Time (s) Firing Pulses for IGBT-3 Output (High/Low) 1.0 -0.1 1 363 1.363 1.370 1 370 1 377 1.377 Time (s) Firing Pulses for IGBT-5 Output (High/Low) 1.0 -0.1 1.363 1.370 1.377 Time (s) Distribution Series Compensation 32 Spring 2017 16

Recommend


More recommend