UANL Mty México iGEM 2013 the Thermocoli project
the speakers
the speakers Heber
the speakers Arely Heber
the speakers Porfirio Arely Heber
the black box Information Input Output processing
Michael B. Elowitz & Stanislas Leibler (2000) Nature 403:335-8.
counters Michael B. Elowitz & Stanislas Leibler (2000) Nature 403:335-8. Ari E. Friedland, et al. (2009) Science 324:1199-1202
counters Michael B. Elowitz & Stanislas Leibler (2000) Nature 403:335-8. JJ Tabor et al. (2009) Cell 137:1272–1281 Ari E. Friedland, et al. (2009) Science 324:1199-1202
counters Michael B. Elowitz & Stanislas Leibler (2000) Nature 403:335-8. JJ Tabor et al. (2009) Cell 137:1272–1281 Ari E. Friedland, et al. (2009) Science 324:1199-1202 JJ Tabor et al. (2010) J Mol Biol 2:315-324
counters Michael B. Elowitz & Stanislas Leibler (2000) Nature 403:335-8. JJ Tabor et al. (2009) Cell 137:1272–1281 Ari E. Friedland, et al. (2009) Science 324:1199-1202 JJ Tabor et al. (2010) J Mol Biol 2:315-324 Tamsir A et al. (2010) Cell 00:1–4
counters Michael B. Elowitz & Stanislas Leibler (2000) Nature 403:335-8. logic-gates JJ Tabor et al. (2009) Cell 137:1272–1281 Ari E. Friedland, et al. (2009) Science 324:1199-1202 JJ Tabor et al. (2010) J Mol Biol 2:315-324 Tamsir A et al. (2010) Cell 00:1–4
counters Michael B. Elowitz & Stanislas Leibler (2000) Nature 403:335-8. logic-gates JJ Tabor et al. (2009) Cell 137:1272–1281 Ari E. Friedland, et al. (2009) Science 324:1199-1202 What is understanding? JJ Tabor et al. (2010) J Mol Biol 2:315-324 Tamsir A et al. (2010) Cell 00:1–4
counters switches Michael B. Elowitz & Stanislas Leibler (2000) Nature 403:335-8. logic-gates JJ Tabor et al. (2009) Cell 137:1272–1281 Ari E. Friedland, et al. (2009) Science 324:1199-1202 What is understanding? JJ Tabor et al. (2010) J Mol Biol 2:315-324 Moon et al. (2012) Nature 00:1-5 Tamsir A et al. (2010) Cell 00:1–4
counters switches information processing in living systems Michael B. Elowitz & Stanislas Leibler (2000) Nature 403:335-8. logic-gates JJ Tabor et al. (2009) Cell 137:1272–1281 Ari E. Friedland, et al. (2009) Science 324:1199-1202 What is understanding? JJ Tabor et al. (2010) J Mol Biol 2:315-324 Moon et al. (2012) Nature 00:1-5 Tamsir A et al. (2010) Cell 00:1–4
the central dogma Francis Crick (1956) Ideas on Protein Synthesis
the central dogma Francis Crick (1956) Ideas on Protein Synthesis
the central dogma Francis Crick (1956) Ideas on Protein Synthesis
the central dogma Francis Crick (1956) Ideas on Protein Synthesis
keep it simple INPU INPUT OUTPUT Input 1 Input 2 A B A AND B 0 0 0 0 1 0 1 0 0 1 1 1
keep it simple INPU INPUT OUTPUT Input 1 A B A AND B 0 0 0 0 1 0 Input 2 1 0 0 1 1 1
RNA thermosensors
RNA thermosensors ⤴ ºC
RNA thermosensors ⤴ ºC
no more Chemicals
no more Chemicals
no more Chemicals
Input A C D B E F H I G Metabolite of Interest
Input A C D B E F H I G Metabolite of Interest
Input A C D B E F H I G Metabolite of Interest
Input A C D B E F H I G Metabolite of Interest
Input A C D B E F H I G Metabolite of Interest
Input A C D B E F H I G Metabolite of Interest
synthetic RNA thermosensors 37ºC 32ºC Neupert J, Karcher D, Bock R (2008) Nuc Acids Res, 36:e124
the circuit BBa_K1140002 BBa_K1140006 37ºC BBa_K1140003 37ºC BBa_K1140004
the circuit BBa_K1140002 BBa_K1140006 37ºC BBa_K1140003 37ºC BBa_K1140004
the circuit BBa_K1140002 BBa_K1140006 37ºC BBa_K1140003 37ºC BBa_K1140004
the circuit BBa_K1140002 BBa_K1140006 37ºC BBa_K1140003 37ºC BBa_K1140004
the circuit BBa_K1140002 BBa_K1140006 37ºC BBa_K1140003 37ºC BBa_K1140004
obtaining the circuit synthetic DNA
the circuit BBa_K1140002 BBa_K1140006 37ºC BBa_K1140003 37ºC BBa_K1140004
the circuit BBa_K1140002 BBa_K1140006 37ºC
testing temperature responsiveness
testing temperature responsiveness
testing temperature responsiveness two moles of molecular oxygen to form a mature mCherry chromophore, compared to the one mole required for GFP Regmi KC et al. (2013) J Phys Chem B 117:2247 − 2253 Shu X et al. (2006) Biochemistry 45:9639-9647
temperature responsiveness a)control 30ºC b)control 37ºC c)30ºC d)37ºC M1 temperature responsiveness
temperature responsiveness a)control 30ºC b)control 37ºC c)30ºC d)37ºC M1 temperature responsiveness
temperature responsiveness 0.6 ! 0.5 ! its ! ce Unit 0.4 ! orescence 25°C ! Fluorescen 30°C ! 0.3 ! e Flu 37°C ! ive elativ 0.2 ! 42°C ! Rela 0.1 ! 0 ! M1 ! M2 ! M11 ! M12 !
Fitting to gaussian
Fitting to gaussian
Fitting to gaussian
Fitting to gaussian
Fitting to gaussian E. coli DH5 α can grow at a temperature as high as 49 ºC, above...sporadic and not reproducible. Fotadar U (2005) J Basic Microbiol 45:403-4.
Fitting to gaussian E. coli DH5 α can grow at a temperature as high as 49 ºC, above...sporadic and not reproducible. Fotadar U (2005) J Basic Microbiol 45:403-4.
deducing from Gaussian
deducing from Gaussian g n i t l e m T A N R
deducing from Gaussian i n c r e a s e g n d i t d l e e m g r T a d A a N t i R o n
deducing from Gaussian
deducing from Gaussian
deducing from Gaussian 37ºC 37ºC
optimizing methods Utermark J and Karlovsky P (2006) BioTechniques 41:150-154
Input 1 Input 2 Input 2
Input 1 Input 2 Input 2
Input 1 Input 2 Input 2
Input 1 Input 2 Input 2
Input 1 Input 2 0.6 ! 0.5 ! Input 2 its ! ce Unit 0.4 ! orescence 25°C ! Fluorescen 30°C ! 0.3 ! e Flu 37°C ! ive elativ 0.2 ! 42°C ! Rela 0.1 ! 0 ! M1 ! M2 ! M11 ! M12 !
Input 1 Input 2 0.6 ! 0.5 ! Input 2 its ! ce Unit 0.4 ! orescence 25°C ! Fluorescen 30°C ! 0.3 ! e Flu 37°C ! ive elativ 0.2 ! 42°C ! Rela 0.1 ! 0 ! M1 ! M2 ! M11 ! M12 !
Input 1 Input 2 0.6 ! 0.5 ! Input 2 its ! ce Unit 0.4 ! orescence 25°C ! increased degradation Fluorescen 30°C ! 0.3 ! e Flu 37°C ! ive g elativ 0.2 ! n 42°C ! 37ºC Rela i t l e m 0.1 ! T A 0 ! N 37ºC M1 ! M2 ! M11 ! M12 ! R
the lab safety and containment
risk assessment: plasmid stability 35% ! 30% ! pUC57 25% ! plasmid retention (same replication origin as pSB1) 20% ! 15% ! 10% ! 5% ! 0% ! Day 1 ! Day 2 ! Day 3 ! Day 4 ! Day 5 !
risk assessment: ID-tags
approved by COBIO
People Reached: 14,000 Synbio Rally: 1.35% International Symposium GENOBIOTEC: 13.5% Talks 3 1 C E T O I B O N E G Math modeling course: 1.62% Math modeling course: 1.62% Human Practices Poster Exhibitions: 4.73% Poster Exhibitions: 4.73% Exhibitions Biotech Roundabout: 15.93 SynBio Tunnel: 60.76% Workshops Exhibitions GENOBIOTEC
People Reached: 14,000 Synbio Rally: 1.35% International Symposium Talks Genobiotec13: 13.5% 3 1 C E T O I B O N E G Math modeling course: 1.62% Poster Exhibitions: 4.73% SynBio Tunnel: 60.76% Biotech Roundabout: 15.93 Exhibitions Workshops Exhibitions GENOBIOTEC
People Reached: 14,000 Synbio Rally: 1.35% Talks International Symposium GENOBIOTEC: 13.5% 3 1 C E T O I B O N E G Math modeling course: 1.62% Poster Exhibitions: 4.73% - School Visits - DNA Bannana Extraction Exhibitions Biotech Roundabout: 15.93 SynBio Tunnel: 60.76% - Chemistry Conference - Poster Exposition Workshops Exhibitions GENOBIOTEC - Synthetic Rally
People Reached: 14,000 Synbio Rally: 1.35% Workshops International Symposium GENOBIOTEC: 13.5% Talks 3 1 C E T O I B O N E G Math modeling course: 1.62% Poster Exhibitions: 4.73% - Math Modelling Course Exhibitions Biotech Roundabout: 15.93 - SynBio UANL 2013 SynBio Tunnel: 60.76% - SynBio CIDEB 2012 - SynBio CIDEB 2013 Exhibitions GENOBIOTEC
People Reached: 14,000 Synbio Rally: 1.35% Synthetic Biology Tunnel 2013 Exhibitions International Symposium GENOBIOTEC: Talks 13.5% 3 1 C E T O I B O N E Math modeling course: 1.62% G Poster Exhibitions: 4.73% Exhibitions Biotech Roundabout: 15.93 SynBio Tunnel: 60.76% Workshops GENOBIOTEC
People Reached: 14,000 Synbio Rally: 1.35% Biotechnology Genomics Roundabout 2013 Exhibitions International Symposium GENOBIOTEC: 13.5% Talks 3 1 C E T O I B O N E G Math modeling course: 1.62% Poster Exhibitions: 4.73% Exhibitions Biotech Roundabout: 15.93 SynBio Tunnel: 60.76% Workshops GENOBIOTEC
Recommend
More recommend