types a d gl m n
play

(Types A-D) gl ( m | n ) - PowerPoint PPT Presentation

Motivation Quantum Supergroups of Basic Type Lyndon Theory PBW Bases Canonical Bases Representation Theory C ANONICAL BASES AND QUANTUM SHUFFLE SUPERALGEBRAS OF BASIC TYPE Sean Clark University of Virginia (joint with David Hill and


  1. Motivation Quantum Supergroups of Basic Type Lyndon Theory PBW Bases Canonical Bases Representation Theory C ANONICAL BASES AND QUANTUM SHUFFLE SUPERALGEBRAS OF BASIC TYPE Sean Clark University of Virginia (joint with David Hill and Weiqiang Wang) arXiv:1310.7523 12/20/13

  2. Motivation Quantum Supergroups of Basic Type Lyndon Theory PBW Bases Canonical Bases Representation Theory Q UANTUM GROUPS AND CANONICAL BASES Let g = n − ⊕ h ⊕ n be a simple Lie algebra. [Lusztig, Kashiwara]: U q ( n ) admits a canonical basis B ; that is, q = q − 1 ; ◮ B is invariant under q �→ ¯ ◮ B equals (any choice of) a PBW basis mod q ; ◮ B is orthonormal (mod q ) with respect to a bilinear form. This basis holds a remarkable amount of information about ◮ geometry; ◮ representation theory; ◮ categorification.

  3. Motivation Quantum Supergroups of Basic Type Lyndon Theory PBW Bases Canonical Bases Representation Theory L IE SUPERALGEBRAS Question : do quantized Lie superalgebras admit canonical bases? (e.g. gl ( m | n ) , osp ( m | 2 n ) , Kac-Moody superalgebras) No adequate setting for geometric construction à la Lusztig Theorem (C-Hill-Wang) The half-quantum supergroup U q ( n ) associated to a Kac-Moody superalgebra with no isotropic roots admits a canonical basis. Example: osp ( 1 | 2 n ) (finite type). Sketch: ◮ Set a parameter π 2 = 1 and a bar involution ¯ q = π q − 1 ◮ Use π to interpolate between super and non-super ◮ Use Kashiwara’s algebraic (crystal) approach to obtain CB

  4. Motivation Quantum Supergroups of Basic Type Lyndon Theory PBW Bases Canonical Bases Representation Theory B ASIC TYPE An important class are Lie superalgebras of basic type ( gl , osp , simple Lie algebras) ◮ Isotropic simple roots ⇒ no root strings ◮ In particular, Kashiwara’s algebraic strategy fails ◮ [Benkart-Kang-Kashiwara, Kwon] Many interesting gl ( m | n ) -modules admit crystal bases. ◮ [Khovanov] gl ( 1 | 2 ) admits a categorification Conclusion: We will have to try some new methods

  5. Motivation Quantum Supergroups of Basic Type Lyndon Theory PBW Bases Canonical Bases Representation Theory A QUANTUM SHUFFLE APPROACH Non-super U q ( n ) has been studied using quantum shuffles [Ram-Lalonde, Rosso, Green, Leclerc, . . . ] Algebra structure � combinatorics of words. ◮ Order on simple roots induces lexicographic order. ◮ Certain words (dominant Lyndon) ↔ positive roots. ◮ Get distinguished bases from word combinatorics. Fact: [Leclerc] Canonical bases can be constructed using quantum shuffles

  6. Motivation Quantum Supergroups of Basic Type Lyndon Theory PBW Bases Canonical Bases Representation Theory S UPER CANONICAL BASES Goal: Use quantum shuffles to construct PBW/canonical bases. For this, we need: ◮ a quantum shuffle presentation of the quantum group; ◮ to study super word combinatorics; ◮ a PBW basis for any order on roots; ◮ a suitable integral form; This is a nontrivial generalization: ◮ Super shuffles lack positivity. ◮ Super word combinatorics are less well behaved. ◮ Leclerc’s construction is not self-contained (need Lusztig’s PBW).

  7. Motivation Quantum Supergroups of Basic Type Lyndon Theory PBW Bases Canonical Bases Representation Theory L IE S UPERALGEBRAS Let g = g ¯ 0 ⊕ g ¯ 1 be a simple Lie superalgebra of basic type ( A − G ). ◮ [ x , y ] = xy − ( − 1 ) p ( x ) p ( y ) yx . Fix a triangular decomposition g = n − ⊕ h ⊕ n + : 1 = { α ∈ h ∗ | g α � = 0 } ; ◮ Root system: � Φ = � 0 ⊔ � Φ ¯ Φ ¯ ◮ � 1 = � Φ iso ⊔ � Φ ¯ Φ n − iso ; ◮ Simple roots: Π = Π ¯ 0 ⊔ Π ¯ 1 = { α i | i ∈ I } , ◮ Dynkin diagram: (Γ , I ) , ◮ I = I ¯ 0 ⊔ I ¯ 1 = I iso ⊔ I n − iso . 1 , I ¯ Unlike Lie algebras, (Γ , I ) depends on h , and � Φ may be unreduced (e.g. type BC ). Reduced root system: Φ = { α ∈ � ∈ � Φ | 1 2 α / Φ }

  8. Motivation Quantum Supergroups of Basic Type Lyndon Theory PBW Bases Canonical Bases Representation Theory (Types A-D) gl ( m | n ) � · · · � � · · · � ⊗ ⊗ � � ⊙ ⊙ · · · ⊙ ⊙ ⊙ ⊙ · · · ⊙ ⊙ osp ( 2 m + 1 | 2 n ) ⊙ · · · ⊙ ⊙ · · · ⊙ ⊙ ⊙ ⊙ > � ⊙ ⊙ · · · ⊙ ⊙ ⊙ < � � ✈ ✈ osp ( 2 n | 2 m ) ⊙ ⊙ · · · ⊙ ⊙ ⊙ ⊙ · · · ⊙ ⊙ ✈ ❍ ❍ ❍ � ⊗ ⊗ ✈ ✈ ⊙ · · · ⊙ ⊙ · · · ⊙ ✈ ⊙ ⊙ ⊙ ⊙ ❍ ❍ ❍ ⊗ ⊗

  9. Motivation Quantum Supergroups of Basic Type Lyndon Theory PBW Bases Canonical Bases Representation Theory T HE HALF - QUANTUM SUPERGROUP Let U q = U q ( n + ) = Q ( q ) � e i | i ∈ I � ; ◮ This is a bialgebra under the multiplication: ( u ⊗ v )( x ⊗ y ) = ( − 1 ) p ( v ) p ( x ) q − ( | v | , | x | ) ( ux ⊗ vy ) , where | v | , | x | ∈ Q + = ⊕ i ∈ I Z + α i ; ◮ [Yamane] Subject to (exotic) Serre-type relations determined by subdiagrams of Γ . Example: � ⊗ � 1 2 3 e 1 e 2 e 3 e 2 + e 3 e 2 e 1 e 2 + e 2 e 1 e 2 e 3 + e 2 e 3 e 2 e 1 = ( q + q − 1 ) e 2 e 1 e 3 e 2

  10. Motivation Quantum Supergroups of Basic Type Lyndon Theory PBW Bases Canonical Bases Representation Theory B ILINEAR FORM F = Q ( q ) � I � , the free algebra on I, i = ( i 1 i 2 . . . i d ) = i 1 · i 2 · · · i d , | i | = α i 1 + . . . + α i d There is a canonical surjection F − → U q , i �→ e i . Facts: [Lusztig, Yamane] ◮ U q ∼ = F / Rad ( · , · ) ; ◮ U q is equipped with a nondegenerate bilinear form ( · , · ) satisfying 1. ( e i , e j ) = δ ij ; 2. ( xy , z ) = ( x ⊗ y , ∆( z )) ; ◮ the bilinear form on U q ⊗ U q can be given by ( u ⊗ v , x ⊗ y ) = ( u , x )( v , y ) .

  11. Motivation Quantum Supergroups of Basic Type Lyndon Theory PBW Bases Canonical Bases Representation Theory Q UANTUM SHUFFLE EMBEDDING Coproduct on F induces a product on F ∗ . Dualizing F ։ U q induces an injective homomorphism → F ∗ ∼ Ψ : U q ∼ = U ∗ q ֒ = ( F , ⋄ ) where ⋄ is the quantum shuffle product : ( i · i ) ⋄ ( j · j ) = ( i ⋄ ( j · j )) · i +( − 1 ) ( p ( i )+ p ( i )) p ( j ) q − ( | i | + α i ,α j ) (( i · i ) ⋄ j ) · j . (quantum shuffles approach is dual to Lusztig’s bialgebra approach) We shall study U q through its image U = Ψ( U q ) ⊂ F .

  12. Motivation Quantum Supergroups of Basic Type Lyndon Theory PBW Bases Canonical Bases Representation Theory E XAMPLE : gl ( 3 | 2 ) ⊗ � � � 1 2 3 4   2 − 1 0 0   − 1 − 1 2 0   0 = { 1 , 2 , 4 } , 1 = I iso = { 3 } , A = I ¯ I ¯   0 − 1 0 1 − 2 0 0 1 Ψ( e 1 e 2 ) = 1 ⋄ 2 = ( 21 ) + q ( 12 ) Ψ( e 3 e 3 ) = 3 ⋄ 3 = ( 33 ) + ( − q 0 )( 33 ) = 0 4 ⋄ ( 13 ) = ( 134 ) + q − 1 ( 143 ) + q − 1 ( 413 ) (In fact, ( 13 ) �∈ U : Ψ( e 1 e 3 ) = ( 13 ) + ( 31 ) )

  13. Motivation Quantum Supergroups of Basic Type Lyndon Theory PBW Bases Canonical Bases Representation Theory T OWARDS PBW BASES Theorem: [Yamane] Any basic type Lie superalgebra admits a PBW basis for a particular (standard) ordering of the roots. But we need PBW bases associated to an arbitary ordering of the simple roots. Idea: Order on simple roots induces a lexicographic order on words. We can then use the combinatorics of the word basis of F .

  14. Motivation Quantum Supergroups of Basic Type Lyndon Theory PBW Bases Canonical Bases Representation Theory C OMBINATORICS OF W ORDS F has a word basis W = ⊔ n ≥ 0 I n ⊂ F , so we can learn things about elements of U by writing them in this basis, e.g. Ψ( e i e j ) = i ⋄ j = ( ji ) + ( − 1 ) p ( i ) p ( j ) q − ( α i ,α j ) ( ij ) . ◮ Fix the lexicographic order on W relative to some ordering ( I , ≤ ) . ◮ Let W + be the set of dominant words , i.e words of the form i = max ( u ) for some u ∈ U . e.g. if i < j , then max ( i ⋄ j ) = ( ji ) .

  15. Motivation Quantum Supergroups of Basic Type Lyndon Theory PBW Bases Canonical Bases Representation Theory M ONOMIAL BASIS Proposition: Let i = ( i 1 , . . . , i d ) ∈ W and ε i = Ψ( e i 1 . . . e i d ) . Then { ε i = i 1 ⋄ · · · ⋄ i d | i = ( i 1 , . . . , i d ) ∈ W + } is a basis of U . We want to refine this basis. Let L denote the set of Lyndon words : i = ( i 1 , . . . , i d ) ∈ L ⇔ i < ( i k , . . . , i d ) for k > 1 . Let L + = L ∩ W + .

  16. Motivation Quantum Supergroups of Basic Type Lyndon Theory PBW Bases Canonical Bases Representation Theory D OMINANT L YNDON WORDS AND POSITIVE ROOTS Theorem: [C-Hill-Wang] 1. The map i = ( i 1 , . . . , i d ) �→ α i 1 + · · · + α i d = | i | is a bijection L + − → Φ + ; 2. Every i ∈ W + has a canonical factorization i = i 1 · · · i n , where i 1 , . . . , i n ∈ L + , i 1 ≥ · · · ≥ i n and i k > i k + 1 if | i k | ∈ Φ + iso . Sketch: ◮ Induct on height of roots ◮ Yamane’s PBW theorem gives dimensions of root spaces ◮ If no bijection, then ii ∈ W + with | i | ∈ Φ iso ◮ This yields a contradition.

  17. Motivation Quantum Supergroups of Basic Type Lyndon Theory PBW Bases Canonical Bases Representation Theory E XAMPLE : gl ( 2 | 1 ) ⊗ � 1 2 L + = { ( 1 ) , ( 12 ) , ( 2 ) } W + = { ( 2 ) a ( 12 ) b ( 1 ) c : c ∈ N , a , b ∈ { 0 , 1 }} Words which are dominant: Words which are not dominant: ◮ (2121) ◮ (112) ◮ (21111) ◮ (22111) ◮ (121) ◮ (1212) ◮ (1111) ◮ (1121)

Recommend


More recommend