two ideas for nuclear dft
play

Two ideas for nuclear DFT (and friends) Thomas Lesinski Dept. of - PowerPoint PPT Presentation

Introduction Separable TgDFT Summary Two ideas for nuclear DFT (and friends) Thomas Lesinski Dept. of Physics & Institute for Nuclear Theory University of Washington, Seattle GSI, May 9, 2012, EMMI program The Extreme Matter Physics


  1. Introduction Separable TgDFT Summary Two ideas for nuclear DFT (and friends) Thomas Lesinski Dept. of Physics & Institute for Nuclear Theory University of Washington, Seattle GSI, May 9, 2012, EMMI program “The Extreme Matter Physics of Nuclei: From Universal Properties to Neutron-Rich Extremes” Two ideas for nuclear DFT (and friends) T. Lesinski

  2. Introduction Separable TgDFT Summary Nuclear structure: methods Two ideas for nuclear DFT (and friends) T. Lesinski

  3. Introduction Separable TgDFT Summary Outline 1 Separable approximations of few-nucleon forces Introduction V low k , NN, particle-hole channel Chiral V 3N at N3LO, particle-hole channel 2 DFT with configuration mixing Hohenberg-Kohn scheme Form of the functional 3 Summary Two ideas for nuclear DFT (and friends) T. Lesinski

  4. Introduction Separable TgDFT Summary Outline 1 Separable approximations of few-nucleon forces Introduction V low k , NN, particle-hole channel Chiral V 3N at N3LO, particle-hole channel 2 DFT with configuration mixing Hohenberg-Kohn scheme Form of the functional 3 Summary Two ideas for nuclear DFT (and friends) T. Lesinski

  5. Introduction Separable TgDFT Summary Separable V NN ■ Principle � � λ a g a ∗ ij g a a g ′ a ik g ′ a λ ′ v ijkl = kl = jl a a ■ If λ a << λ 1 for a > n: truncate a g ′ a ij λ ′ ij g ′ a ■ HF: Γ ij = � a ˘ ρ a , with ˘ ρ a = � ij ρ ij a g a ij g a ■ HFB: ∆ ij = � κ a = � ij λ a ˘ κ a , with ˘ ij κ ij ■ Cost O ( nN ) down from O ( N 2 ) = O ( n 4 o ) ■ The story so far ■ K. Hebeler, T. Duguet, TL, A. Schwenk, Phys. Rev. C 80 044321 (2009) ■ Y. Tian, Z. Ma, P. Ring Phys. Rev. C 79 064301 (2009) ■ T. Nik˘ sić, P. Ring, D. Vretenar, Yuan Tian and Zhong-yu Ma, Phys. Rev. C 81, 054318 (2010) ■ L. M. Robledo, Phys. Rev. C 81, 044312 (2010) ■ TL, K Hebeler, T Duguet and A Schwenk, J. Phys. G 39 015108 (2012) Two ideas for nuclear DFT (and friends) T. Lesinski

  6. Introduction Separable TgDFT Summary Separable V NN ■ Principle � � λ a g a ∗ ij g a a g ′ a ik g ′ a λ ′ v ijkl = kl = jl a a ■ If λ a << λ 1 for a > n: truncate a g ′ a ij λ ′ ij g ′ a ■ HF: Γ ij = � a ˘ ρ a , with ˘ ρ a = � ij ρ ij a g a ij g a ■ HFB: ∆ ij = � κ a = � ij λ a ˘ κ a , with ˘ ij κ ij ■ Cost O ( nN ) down from O ( N 2 ) = O ( n 4 o ) ■ The story so far ■ K. Hebeler, T. Duguet, TL, A. Schwenk, Phys. Rev. C 80 044321 (2009) ■ Y. Tian, Z. Ma, P. Ring Phys. Rev. C 79 064301 (2009) ■ T. Nik˘ sić, P. Ring, D. Vretenar, Yuan Tian and Zhong-yu Ma, Phys. Rev. C 81, 054318 (2010) ■ L. M. Robledo, Phys. Rev. C 81, 044312 (2010) ■ TL, K Hebeler, T Duguet and A Schwenk, J. Phys. G 39 015108 (2012) Two ideas for nuclear DFT (and friends) T. Lesinski

  7. Introduction Separable TgDFT Summary Separable V NN ■ Principle � � λ a g a ∗ ij g a a g ′ a ik g ′ a λ ′ v ijkl = kl = jl a a ■ If λ a << λ 1 for a > n: truncate a g ′ a ij λ ′ ij g ′ a ■ HF: Γ ij = � a ˘ ρ a , with ˘ ρ a = � ij ρ ij a g a ij g a ■ HFB: ∆ ij = � κ a = � ij λ a ˘ κ a , with ˘ ij κ ij ■ Cost O ( nN ) down from O ( N 2 ) = O ( n 4 o ) ■ The story so far ■ K. Hebeler, T. Duguet, TL, A. Schwenk, Phys. Rev. C 80 044321 (2009) ■ Y. Tian, Z. Ma, P. Ring Phys. Rev. C 79 064301 (2009) ■ T. Nik˘ sić, P. Ring, D. Vretenar, Yuan Tian and Zhong-yu Ma, Phys. Rev. C 81, 054318 (2010) ■ L. M. Robledo, Phys. Rev. C 81, 044312 (2010) ■ TL, K Hebeler, T Duguet and A Schwenk, J. Phys. G 39 015108 (2012) Two ideas for nuclear DFT (and friends) T. Lesinski

  8. Introduction Separable TgDFT Summary Separable V NN : pairing systematics TL, K Hebeler, T Duguet and A Schwenk, J. Phys. G 39 015108 (2012) Two ideas for nuclear DFT (and friends) T. Lesinski

  9. Introduction Separable TgDFT Summary V low k , NN, (Λ = 2 . 0 fm − 1 ) particle-hole channel ■ Basis: spherical Bessel, R box = 18 fm, k cut = 2 . 5 fm − 1 , l cut = 20 ■ N = 3744 for J π = 0 + ■ Obtain ph-separable form 1 ) − 1 | V NN , T z | ( n 2 l 2 j 2 ) − 1 n ′ 2 � ( J ) � n 1 l 1 j 1 ( n ′ 1 l ′ 1 j ′ 2 l ′ 2 j ′ � g JT z , a 1 ) g JT z , a λ JT z = a ( n 1 l 1 j 1 , n ′ 1 l ′ 1 j ′ ( n 2 l 2 j 2 , n ′ 2 l ′ 2 j ′ 2 ) a ■ Eigenvalue decomposition: ScaLAPACK PDSYEV Two ideas for nuclear DFT (and friends) T. Lesinski

  10. Introduction Separable TgDFT Summary V low k , NN, particle-hole channel 10000 nn np 100 1 |eigenvalue| 0.01 0.0001 1e-06 1e-08 1e-10 0 500 1000 1500 2000 2500 3000 3500 4000 index Two ideas for nuclear DFT (and friends) T. Lesinski

  11. Introduction Separable TgDFT Summary V 3N ? ■ Can we use a similar technique for 3N forces ? Higher-Order Singular Value Decomposition (HOSVD) ■ L. De Lathauwer, B. De Moor and J. Vandewalle, SIAM J. Matrix Anal. Appl. 21, 1253 (2000) ■ For a symmetric rank-3 tensor: T pqr = � stu S stu U sp U tq U ur with ■ U an orthogonal (unitary) matrix prs S qrs = σ 2 rs S ∗ ■ All-orthogonality: � p δ pq ■ Ordering: σ 1 ≥ σ 2 ≥ ··· ≥ σ N ■ ph and pp factorizations: HF scaling O ( N 3 ) = O ( n 6 o ) → O ( n 3 )+ O ( nN ) v (3) � λ abc g a ∗ ij g b lm g ′ c � abc g ′ a il g ′ b jm g ′ c λ ′ ijklmn = kn = kn abc abc 1 Define A pI = T pqr , with I = ( q , r ) and SVD A pI = � s U ps σ s V ∗ Is 2 Core tensor: ru T stu , cost O ( N 5 ) ■ Use S pqr = � stu U ∗ ps U ∗ qt U ∗ stu U sp U tq U ur S stu = T pqr , cost O ( n 9 ) ■ Invert � Two ideas for nuclear DFT (and friends) T. Lesinski

  12. Introduction Separable TgDFT Summary V 3N ? ■ Can we use a similar technique for 3N forces ? Higher-Order Singular Value Decomposition (HOSVD) ■ L. De Lathauwer, B. De Moor and J. Vandewalle, SIAM J. Matrix Anal. Appl. 21, 1253 (2000) ■ For a symmetric rank-3 tensor: T pqr = � stu S stu U sp U tq U ur with ■ U an orthogonal (unitary) matrix prs S qrs = σ 2 rs S ∗ ■ All-orthogonality: � p δ pq ■ Ordering: σ 1 ≥ σ 2 ≥ ··· ≥ σ N ■ ph and pp factorizations: HF scaling O ( N 3 ) = O ( n 6 o ) → O ( n 3 )+ O ( nN ) v (3) � λ abc g a ∗ ij g b lm g ′ c � abc g ′ a il g ′ b jm g ′ c λ ′ ijklmn = kn = kn abc abc 1 Define A pI = T pqr , with I = ( q , r ) and SVD A pI = � s U ps σ s V ∗ Is 2 Core tensor: ru T stu , cost O ( N 5 ) ■ Use S pqr = � stu U ∗ ps U ∗ qt U ∗ stu U sp U tq U ur S stu = T pqr , cost O ( n 9 ) ■ Invert � Two ideas for nuclear DFT (and friends) T. Lesinski

  13. Introduction Separable TgDFT Summary V 3N ? ■ Can we use a similar technique for 3N forces ? Higher-Order Singular Value Decomposition (HOSVD) ■ L. De Lathauwer, B. De Moor and J. Vandewalle, SIAM J. Matrix Anal. Appl. 21, 1253 (2000) ■ For a symmetric rank-3 tensor: T pqr = � stu S stu U sp U tq U ur with ■ U an orthogonal (unitary) matrix prs S qrs = σ 2 rs S ∗ ■ All-orthogonality: � p δ pq ■ Ordering: σ 1 ≥ σ 2 ≥ ··· ≥ σ N ■ ph and pp factorizations: HF scaling O ( N 3 ) = O ( n 6 o ) → O ( n 3 )+ O ( nN ) v (3) � λ abc g a ∗ ij g b lm g ′ c � abc g ′ a il g ′ b jm g ′ c λ ′ ijklmn = kn = kn abc abc 1 Define A pI = T pqr , with I = ( q , r ) and SVD A pI = � s U ps σ s V ∗ Is 2 Core tensor: ru T stu , cost O ( N 5 ) ■ Use S pqr = � stu U ∗ ps U ∗ qt U ∗ stu U sp U tq U ur S stu = T pqr , cost O ( n 9 ) ■ Invert � Two ideas for nuclear DFT (and friends) T. Lesinski

  14. Introduction Separable TgDFT Summary V 3N ? ■ Can we use a similar technique for 3N forces ? Higher-Order Singular Value Decomposition (HOSVD) ■ L. De Lathauwer, B. De Moor and J. Vandewalle, SIAM J. Matrix Anal. Appl. 21, 1253 (2000) ■ For a symmetric rank-3 tensor: T pqr = � stu S stu U sp U tq U ur with ■ U an orthogonal (unitary) matrix prs S qrs = σ 2 rs S ∗ ■ All-orthogonality: � p δ pq ■ Ordering: σ 1 ≥ σ 2 ≥ ··· ≥ σ N ■ ph and pp factorizations: HF scaling O ( N 3 ) = O ( n 6 o ) → O ( n 3 )+ O ( nN ) v (3) � λ abc g a ∗ ij g b lm g ′ c � abc g ′ a il g ′ b jm g ′ c λ ′ ijklmn = kn = kn abc abc 1 Define A pI = T pqr , with I = ( q , r ) and SVD A pI = � s U ps σ s V ∗ Is 2 Core tensor: ru T stu , cost O ( N 5 ) ■ Use S pqr = � stu U ∗ ps U ∗ qt U ∗ stu U sp U tq U ur S stu = T pqr , cost O ( n 9 ) ■ Invert � Two ideas for nuclear DFT (and friends) T. Lesinski

  15. Introduction Separable TgDFT Summary V 3N ? ■ Define A pI = T pqr , with I = ( q , r ) and SVD A pI = � s U ps σ s V Is s U ps σ 2 ■ Use EVD of � I A pI A ∗ qI = � s U ∗ qs ■ Choose convenient representation � I A pI A ∗ qI = � IJK A pI W ∗ JI W JK A ∗ qK 1 ) − 1 ( � 2 ) − 1 | V 3 N | ( l 3 j 3 n 3 ) − 1 l ′ 3 � ( J ) � � k 1 σ 1 � k 2 σ 2 ( � k ′ 1 σ ′ k ′ 2 σ ′ 3 j ′ 3 n ′ ■ Basis: spherical Bessel, R box = 15 fm, k cut = 2 . 5 fm − 1 , l cut = 12 ■ N = 1909 for J π = 0 + ■ V 3 N chiral N2LO, Λ χ = 700 MeV, Λ 3 N = 2 . 0 fm − 1 ( c 1 = − 0 . 76, c 3 = − 4 . 78, c 4 = 3 . 96, c D = − 2 . 785, c E = − 0 . 822) Two ideas for nuclear DFT (and friends) T. Lesinski

  16. Introduction Separable TgDFT Summary V 3N (PRELIMINARY) 1 nn[n] pn[n] 0.1 0.01 | σ / σ max | 0.001 0.0001 1e-05 1e-06 0 100 200 300 400 500 600 700 800 900 1000 index Two ideas for nuclear DFT (and friends) T. Lesinski

Recommend


More recommend