truncation error in image interpolation
play

Truncation Error in Image Interpolation Loc Simon SampTA 2013 - - PowerPoint PPT Presentation

Truncation Error in Image Interpolation Loc Simon SampTA 2013 - Bremen 1 Collaborator Jean-Michel Morel 2 Truncation error: What is that? X k s X t s 3 Truncation error: What is that? X X t := X k sinc( t k ) k Z 2 4


  1. Truncation Error in Image Interpolation Loïc Simon SampTA 2013 - Bremen 1

  2. Collaborator Jean-Michel Morel 2

  3. Truncation error: What is that? X k ’s X t ’s 3

  4. Truncation error: What is that? X X t := X k sinc( t − k ) k ∈ Z 2 4

  5. Truncation error: What is that? ? 5

  6. Context • Motivations • Assumptions • Goal • Related work 6

  7. Motivations • Image registration • optical flow • stereopsis • super-resolution • sub-pixel accuracy 7

  8. Motivations • Image registration • optical flow • stereopsis • super-resolution • sub-pixel accuracy • error ~ quantization 8

  9. Assumptions 9

  10. Assumptions 10

  11. Assumptions • a 1d random process X t ( t ∈ R ) • observed on k ∈ { − K, . . . , K } • weakly stationary µ, d Ψ X ( ω ) • no aliasing X t X X t := X k sinc( t − k ) k ∈ Z t − K 0 K 11

  12. Goal • Linear shift-invariant ˜ X X t := X k h ( t − k ) k ≤ K • Practical bounds on r h i RMSE [ ˜ ( ˜ X t ] := X t − X t ) 2 E 12

  13. Goal • Linear shift-invariant ⇢ h ( t ) = sinc( t ) ˜ X X t := X k h ( t − k ) h ( t ) = sincd K ( t ) k ≤ K • Practical bounds on r h i RMSE [ ˜ ( ˜ X t ] := X t − X t ) 2 E ➡ Sinc interpolation ➡ DFT interpolation 13

  14. Related Work Truncation Error Approximation Jagerman 1966 Strang & Fix 1971 Yao & Thomas 1966 Blu & Unser 1999 Campbell 1968 Condat & al. 2005 Brown 1969 Xu & Huang & Li 2009 Other Moisan 2011 Jerri 1977 14

  15. Related Work Truncation Error Approximation Strang & Fix 1971 Jagerman 1966 Yao & Thomas 1966 Blu & Unser 1999 Campbell 1968 Condat & al. 2005 Brown 1969 Xu & Huang & Li 2009 ➡ sinc only ➡ oversampled case Other Moisan 2011 Jerri 1977 15

  16. Related Work Truncation Error Approximation Jagerman 1966 Strang & Fix 1971 Yao & Thomas 1966 Blu & Unser 1999 Campbell 1968 Condat & al. 2005 Brown 1969 ➡ K = ∞ Xu & Huang & Li 2009 Other Moisan 2011 Jerri 1977 16

  17. Related Work Truncation Error Approximation Jagerman 1966 Strang & Fix 1971 Yao & Thomas 1966 Blu & Unser 1999 Campbell 1968 Condat & al. 2005 Brown 1969 Xu & Huang & Li 2009 Other Moisan 2011 Jerri 1977 17

  18. Rest of the talk • Theoretical bounds • Experimental results • Discussion & conclusion 18

  19. A bit of intuition... δ ( t ) t δ ( t ) 19

  20. Theoretical bounds 0 ⇣ ⌘ 1 1 µ 2 O δ ( t ) 2 B C + B C X ]( t ) = sin 2 ( π t ) B C ⇣ ⌘ σ 0 2 MSE [ ˜ 1 α O B C × δ ( t ) 2 π 2 B C B C + B C @ ⇣ ⌘ A 1 σ 2 α O δ ( t ) 20

  21. Theoretical bounds 0 ⇣ ⌘ 1 1 µ 2 O δ ( t ) 2 B C + B C X ]( t ) = sin 2 ( π t ) B C ⇣ ⌘ σ 0 2 MSE [ ˜ 1 α O B C × δ ( t ) 2 π 2 B C B C + B C @ ⇣ ⌘ A 1 σ 2 α O δ ( t ) 21

  22. Theoretical bounds 0 ⇣ ⌘ 1 1 0 µ 2 O δ ( t ) 2 B C + B C X ]( t ) = sin 2 ( π t ) B C ⇣ ⌘ 2 σ 0 2 MSE [ ˜ 1 α O B C × δ ( t ) 2 π 2 B C B C + B C @ ⇣ ⌘ A 1 2 σ 2 α O δ ( t ) ➡ DFT modifications 22

  23. Spectral representation � � 2 � � X � � MSE [ ˜ X ]( t ) = µ 2 1 − h ( t − k ) � � � � � � | k | ≤ K | {z } MSE [ µ ]( t ) + Z � � 2 � � 1 X � � e i ω t − e i ω k h ( t − k ) d Ψ X ( ω ) � � 2 π � � � � | k | ≤ K | {z } MSE [ d Ψ X ]( t ) ➡ Average component ➡ Spectral component 23

  24. Spectral representation � � 2 � � X � � MSE [ ˜ X ]( t ) = µ 2 1 − h ( t − k ) � � � � � � | k | ≤ K | {z } MSE [ µ ]( t ) + Z � � 2 � � 1 X � � e i ω t − e i ω k h ( t − k ) d Ψ X ( ω ) � � 2 π � � � � | k | ≤ K | {z } MSE [ d Ψ X ]( t ) ➡ Aliasing is not forbidden 24

  25. Spectral representation � � 2 � � X X � � MSE [ ˜ X ]( t ) = µ 2 sinc( t − k ) − h ( t − k ) � � � � � � k ∈ Z | k | ≤ K | {z } MSE [ µ ]( t ) + � � 2 � � Z 1 X X � � e i ω k sinc( t − k ) − e i ω k h ( t − k ) d Ψ X ( ω ) � � 2 π � � | ω | ≤ π � � k ∈ Z | k | ≤ K | {z } MSE [ d Ψ X ]( t ) ➡ Under no aliasing condition 25

  26. Spectral representation � � 2 � � X X � � MSE [ ˜ X ]( t ) = µ 2 sinc( t − k ) − sinc( t − k ) � � � � � � k ∈ Z | k | ≤ K | {z } MSE [ µ ]( t ) + � � 2 � � Z 1 X X � � e i ω k sinc( t − k ) − e i ω k sinc( t − k ) d Ψ X ( ω ) � � 2 π � � | ω | ≤ π � � k ∈ Z | k | ≤ K | {z } MSE [ d Ψ X ]( t ) ➡ Under no aliasing condition ➡ Sinc 26

  27. Average component MSE [ µ ]( t ) = sin 2 ( π t ) ✓ 1 ◆ µ 2 O π 2 δ ( t ) 2 ➡ Gibbs phenomenon 27

  28. Average component MSE [ µ ]( t ) = 0 ➡ DFT 28

  29. Spectral component Spectrum (dB) Spectrum (dB) Spectrum (dB) Spectrum (dB) 40 40 42.8dB 42.8dB 36.5dB 36.5dB 40 40 30 30 30 30 20 20 20 20 15.2dB 15.2dB 10 10 10 10 1.7dB 1.7dB 0.50 0.50 0.50 0.50 60 60 Spectrum (dB) Spectrum (dB) Spectrum (dB) Spectrum (dB) 41.6dB 41.6dB 54.2dB 54.2dB 40 40 50 50 40 40 30 30 30 30 23.0dB 23.0dB 20 20 20 20 9.8dB 9.8dB 10 10 10 10 0.50 0.50 0.50 0.50 29

  30. Spectral decomposition d Ψ X ( ω ) ψ α ( ω ) d ω d Ψ 0 α ( ω ) σ 2 | ω |  π d ω α σ 2 α ω απ π 0 ➡ spectrum ≤ oversampled + white-noise 30

  31. Oversampled case supp( d Ψ 0 α ) ⊂ {| ω | ≤ απ } = ⇒ α ]( t ) =sin 2 ( π t ) ✓ ◆ 1 σ 0 2 MSE [ d Ψ 0 α O π 2 δ ( t ) 2 where, α = 1 1 Z σ 0 2 1 + cos( ω ) d Ψ 0 α ( ω ) π | ω |  απ 31

  32. Oversampled case supp( d Ψ 0 α ) ⊂ {| ω | ≤ απ } = ⇒ =sin 2 ( π t ) ⇢ � ⇢ � ✓ ◆ σ 0 2 1 MSE [ d Ψ 0 α ]( t ) O α µ 2 MSE [ µ ]( t ) π 2 δ ( t ) 2 where, α = 1 1 Z σ 0 2 1 + cos( ω ) d Ψ 0 α ( ω ) π | ω |  απ 32

  33. White-noise d Ψ X ( ω ) ψ α ( ω ) d ω d Ψ 0 α ( ω ) σ 2 | ω |  π d ω α σ 2 α d Ψ ( ω ) = σ 2 | ω | ≤ π d ω ω α απ π 0 = ⇒ ✓ 1 MSE [ d Ψ ]( t ) =sin 2 ( π t ) ◆ σ 2 α O π 2 δ ( t ) ➡ Slow decay 33

  34. Recap 0 ⇣ ⌘ 1 1 0 µ 2 O δ ( t ) 2 B C + B C X ]( t ) = sin 2 ( π t ) B C ⇣ ⌘ 2 σ 0 2 MSE [ ˜ 1 α O B C × δ ( t ) 2 π 2 B C B C + B C @ ⇣ ⌘ A 1 2 σ 2 α O δ ( t ) ➡ DFT modifications 34

  35. Experimental results • Bound validity • Bound tightness • Order of magnitude ➡ online demo: IPOL · Image Processing On Line 35

  36. Experimental results • Bound validity • Bound tightness • Order of magnitude ➡ online demo: IPOL · Image Processing On Line 36

  37. Experimental results • Bound validity • Bound tightness • Order of magnitude ➡ online demo: IPOL · Image Processing On Line 37

  38. Experimental results • Bound validity • Bound tightness • Order of magnitude ➡ online demo: IPOL · Image Processing On Line 38

  39. Bound tightness Sinc Sinc w/o DFT µ q ➡ Smooth image ➡ E [quant 2 ] = 0 . 3 39

  40. Bound tightness Sinc Sinc w/o DFT µ q ➡ Simulated white-noise ➡ E [quant 2 ] = 0 . 3 40

  41. Bound tightness Sinc Sinc w/o DFT µ q ➡ Textured image ➡ E [quant 2 ] = 0 . 3 41

  42. Other kernels? • Bound validity • Bound tightness • Order of magnitude ➡ online demo: IPOL · Image Processing On Line 42

  43. Other kernels? Sinc w/o µ 43

  44. Other kernels? Sinc + accel 44

  45. Other kernels? Bilinear 45

  46. Other kernels? Bicubic 46

  47. Other kernels? B-Spline 3 47

  48. Other kernels? B-Spline 11 48

  49. Conclusion • Textures are nasty • Aliasing is not the worst thing in life • Is there a hope for image interpolation? 49

  50. Empirical estimate - ... 50

  51. Textures • What’s special about images? 51

Recommend


More recommend