transient spatiotemporal chaos is extensive in three
play

Transient spatiotemporal chaos is extensive in three - PowerPoint PPT Presentation

Introduction Lifetime of Transient Chaos Lyapunov Exponents Intensive Quantities Conclusions Works Cited Transient spatiotemporal chaos is extensive in three reaction-diffusion networks Dan Stahlke March 24, 2010 Dan Stahlke and Renate


  1. Introduction Lifetime of Transient Chaos Lyapunov Exponents Intensive Quantities Conclusions Works Cited Transient spatiotemporal chaos is extensive in three reaction-diffusion networks Dan Stahlke March 24, 2010 Dan Stahlke and Renate Wackerbauer, Transient spatiotemporal chaos is extensive in three reaction-diffusion networks , Physical Review E, 80 (2009), no. 5, 056211. 1 / 43

  2. Introduction Chaos Lifetime of Transient Chaos Spatiotemporal Chaos Lyapunov Exponents Transient Chaos Intensive Quantities Reaction-diffusion networks Conclusions Models Works Cited Extensivity Chaos Lorenz model: sensitivity to initial conditions Chaotic systems are typified by: 25 20 15 ◮ Sensitivity to initial conditions 10 5 0 y ◮ Attractor with fractional -5 -10 -15 dimension -20 -25 0 2 4 6 8 10 12 14 16 18 20 Example: Lorenz model t ◮ dx / dt = σ ( y − z ) Lorenz model: chaotic attractor 50 ◮ dy / dt = x ( ρ − z ) − y 45 40 35 30 ◮ dz / dt = xy − β z 25 z 20 15 ◮ σ = 10 , β = 8 / 3 , ρ = 28 10 5 0 -20 -15 -10 -5 0 5 10 15 20 x 2 / 43

  3. Introduction Chaos Lifetime of Transient Chaos Spatiotemporal Chaos Lyapunov Exponents Transient Chaos Intensive Quantities Reaction-diffusion networks Conclusions Models Works Cited Extensivity Spatiotemporal Chaos Some systems show disorder in both time and space ◮ Sensitivity to initial conditions ◮ No long-range spatial correlations Examples: ◮ Turbulence ◮ Some chemical reactions ◮ Fibrillation in heart 3 / 43

  4. Introduction Chaos Lifetime of Transient Chaos Spatiotemporal Chaos Lyapunov Exponents Transient Chaos Intensive Quantities Reaction-diffusion networks Conclusions Models Works Cited Extensivity Transient Chaos ◮ In some systems, chaos suddenly collapses after a lengthy chaotic interval ◮ In this case there is a chaotic saddle instead of a chaotic attractor 0.35 0.3 0.25 0.2 0.15 b 0.1 0.05 0 -0.05 0 100 200 300 400 500 600 700 800 900 t 4 / 43

  5. Introduction Chaos Lifetime of Transient Chaos Spatiotemporal Chaos Lyapunov Exponents Transient Chaos Intensive Quantities Reaction-diffusion networks Conclusions Models Works Cited Extensivity Reaction-diffusion networks (RDN) ◮ RDN are systems having a local reaction term and a diffusion term ◮ The domain can be continuous or a discrete network of nodes ◮ Example: chemical reactions ◮ Example: animal populations 5 / 43

  6. Introduction Chaos Lifetime of Transient Chaos Spatiotemporal Chaos Lyapunov Exponents Transient Chaos Intensive Quantities Reaction-diffusion networks Conclusions Models Works Cited Extensivity Reaction-diffusion networks (RDN) The general form of RDN dynamics is y ( x )) + D d 2 d y ( x ) = � dt � F ( � dx 2 H � y ( x ) . Or, in discrete form N d � y i = � dt � F ( � y i ) + D G ij H � y j j = 1 where typically � N j = 1 G ij is the discrete Laplacian G ij = ∇ 2 ij = δ i , j − 1 − 2 δ ij + δ i , j + 1 . √ Effective system size is determined by N / D . 6 / 43

  7. Introduction Chaos Lifetime of Transient Chaos Spatiotemporal Chaos Lyapunov Exponents Transient Chaos Intensive Quantities Reaction-diffusion networks Conclusions Models Works Cited Extensivity Boundary conditions Periodic No-flux Shortcut 7 / 43

  8. Introduction Chaos Lifetime of Transient Chaos Spatiotemporal Chaos Lyapunov Exponents Transient Chaos Intensive Quantities Reaction-diffusion networks Conclusions Models Works Cited Extensivity Gray-Scott model [GS84] Phase portrait F a = 1 − a − µ ab 2 0.4 F b = µ ab 2 − φ b 0.35 0.3 � � 1 0 0.25 H = 0 1 0.2 b µ = 33 . 7 , φ = 2 . 8 0.15 0.1 ◮ Represents an open autocatalytic 0.05 0 reaction A + 2 B → 3 B and B → C 0 0.2 0.4 0.6 0.8 1 a 8 / 43

  9. Introduction Chaos Lifetime of Transient Chaos Spatiotemporal Chaos Lyapunov Exponents Transient Chaos Intensive Quantities Reaction-diffusion networks Conclusions Models Works Cited Extensivity Gray-Scott model [GS84] Space −→ Phase portrait 0.4 0.35 ←− Time 0.3 0.25 0.2 b 0.15 0.1 0.05 0 0 0.2 0.4 0.6 0.8 1 a 9 / 43

  10. Introduction Chaos Lifetime of Transient Chaos Spatiotemporal Chaos Lyapunov Exponents Transient Chaos Intensive Quantities Reaction-diffusion networks Conclusions Models Works Cited Extensivity B¨ ar-Eiswirth model [BE93] ǫ ( 1 − a )( a − b + β F a = a ) Phase portrait α F b = f ( a ) − b 1  0 if a < 1 / 3   0.8  1 − 6 . 75 a ( a − 1 ) 2 f ( a ) = 1 / 3 ≤ a ≤ 1  if    1 if a > 1  0.6 � � 1 0 b H = 0 0 0.4 α = 0 . 84 , β = 0 . 07 , ǫ = 0 . 12 0.2 0 ◮ Describes a surface reaction model for 0 0.2 0.4 0.6 0.8 1 the oxidation of CO on Pt a 10 / 43

  11. Introduction Chaos Lifetime of Transient Chaos Spatiotemporal Chaos Lyapunov Exponents Transient Chaos Intensive Quantities Reaction-diffusion networks Conclusions Models Works Cited Extensivity B¨ ar-Eiswirth model [BE93] Space −→ Phase portrait 1 0.8 ←− Time 0.6 b 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 a 11 / 43

  12. Introduction Chaos Lifetime of Transient Chaos Spatiotemporal Chaos Lyapunov Exponents Transient Chaos Intensive Quantities Reaction-diffusion networks Conclusions Models Works Cited Extensivity Wacker-Sch¨ oll model [WBS95] b − a Phase portrait F a = ( b − a ) 2 + 1 − τ a 12 11.5 F b = α ( j 0 − ( b − a )) 11 � � 1 0 H = 10.5 0 8 10 b α = 0 . 02 , τ = 0 . 05 , j 0 = 1 . 21 9.5 9 ◮ Describes charge transport in a 8.5 simplified model of layered 8 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 semiconductors a 12 / 43

  13. Introduction Chaos Lifetime of Transient Chaos Spatiotemporal Chaos Lyapunov Exponents Transient Chaos Intensive Quantities Reaction-diffusion networks Conclusions Models Works Cited Extensivity Wacker-Sch¨ oll model [WBS95] Space −→ Phase portrait 12 11.5 ←− Time 11 10.5 10 b 9.5 9 8.5 8 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 a 13 / 43

  14. Introduction Chaos Lifetime of Transient Chaos Spatiotemporal Chaos Lyapunov Exponents Transient Chaos Intensive Quantities Reaction-diffusion networks Conclusions Models Works Cited Extensivity Extensivity Extended chaotic systems that have no long-range interactions are expected to be uncorrelated at large length scales and therefore should behave as a sum of their parts [Rue82]. Therefore, it can be expected that: √ ◮ D L ∝ N / D √ ◮ ln � T � ∝ N / D (these measures will be defined later on) 14 / 43

  15. Introduction Lifetime of Transient Chaos Lyapunov Exponents Transient Chaos Intensive Quantities Average Lifetime Conclusions Works Cited Transient Chaos Space Time (a) (b) (c) (d) (e) ◮ (a) Gray-Scott, N=210 ◮ (b) B¨ ar-Eiswirth, N=460 ◮ (c)-(e) Wacker-Sch¨ oll, N=500,460,420 15 / 43

  16. Introduction Lifetime of Transient Chaos Lyapunov Exponents Transient Chaos Intensive Quantities Average Lifetime Conclusions Works Cited Average Lifetime: Gray-Scott model 10 7 10 6 10 5 <T> 10 4 10 3 10 2 100 140 180 220 260 N ( + ) no-flux ( � ) periodic with shortcut of length 50 ( △ ) periodic with shortcut of length N / 2 ( � ) periodic 16 / 43

  17. Introduction Lifetime of Transient Chaos Lyapunov Exponents Transient Chaos Intensive Quantities Average Lifetime Conclusions Works Cited Average Lifetime: B¨ ar-Eiswirth model 10 6 10 5 <T> 10 4 10 3 10 2 180 220 260 300 340 380 420 460 N ( + ) no-flux 17 / 43

  18. Introduction Lifetime of Transient Chaos Lyapunov Exponents Transient Chaos Intensive Quantities Average Lifetime Conclusions Works Cited Average Lifetime: Wacker-Sch¨ oll model 10 6 10 5 <T> 10 4 10 3 100 200 300 400 500 600 700 800 N ( + ) no-flux ( � ) periodic 18 / 43

  19. Introduction Lyapunov Exponents Lifetime of Transient Chaos Lyapunov Exponent Computation Lyapunov Exponents Lyapunov Spectrum and Related Quantities Intensive Quantities Extensivity Conclusions Y-Intercept Works Cited Lyapunov Exponents ◮ Lyapunov exponents describe the rate at which small perturbations expand or contract y ′ ( t ) − � ◮ ǫ� v ( t ) = � y ( t ) where ǫ is infinitesimal ◮ The largest Lyapunov exponent is positive in chaotic systems Lorenz model: sensitivity to initial conditions 25 20 15 10 5 0 y -5 -10 -15 -20 -25 0 2 4 6 8 10 12 14 16 18 20 t 19 / 43

  20. Introduction Lyapunov Exponents Lifetime of Transient Chaos Lyapunov Exponent Computation Lyapunov Exponents Lyapunov Spectrum and Related Quantities Intensive Quantities Extensivity Conclusions Y-Intercept Works Cited Lyapunov Spectrum ◮ The number of Lyapunov exponents is equal to the number of degrees of freedom. ◮ They describe rates of expansion of infinitesimal perturbation vectors belonging to a sequence of nested linear subspaces 20 / 43

  21. Introduction Lyapunov Exponents Lifetime of Transient Chaos Lyapunov Exponent Computation Lyapunov Exponents Lyapunov Spectrum and Related Quantities Intensive Quantities Extensivity Conclusions Y-Intercept Works Cited First Lyapunov Exponent 21 / 43

Recommend


More recommend