Tracking Articulated Objects Alexander (Sasha) Lambert CS7495 – Fall 2014
Tracking From Depth • Infra-red point-clouds (structured light) • Affordable sensors (Primesense) • Large body of work on people-tracking Complex tracking methods ML-based approach (ex. Decision Kinect One sensor (Microsoft) forests) http://www.blogcdn.com/ http://www.creativeapplications.net/ 2 2
Tracking – Robotics • Move towards cheaper robot manipulators Problem: poor encoders, flexible joints • Would like a generalized approach • Applications: Human/Robot, Robot/Robot interaction (ex. Task collaboration) Self-calibration (Manipulators) Interacting with every day objects (drawers, doors, can-openers...) • Realtime, robust to occlusion • Useability and generality 3 3
Tracking • DART (RSS '2014) - Schmidt, Newcombe, Fox Generalized framework Realtime, GPU-optimized Requires only kinematic model & part geometries 4 4
HEADER 5 5
HEADER 6 6
Kalman Filter 7 7
Extended Kalman Filter • Non-linear functions (dynamics, measurement) Idea: local linearization Preserves Gaussian shape 8 8
Extended Kalman Filter Predictor Correcto r Predictor Correcto r 9 9
DART Tracker Experiments → const. dyn. Model prior(t) = posterior(t-1) 10 10
DART Tracker • Develop a measurement model • θ – pose parameters (state) • D – Depth map “Tracking Energy” 11 11
Point Cloud Registration • Correspondence between model and data • ICP – Iterative Closest Point Data association: many variants (CP, P2PL, KNN) http://taylorwang.files.wordpress.com/ 12 12
Point Cloud Registration Non-Linear Optimization (Fitzgibbon '01) • Gradient-based iteration • Levenberg-Marquardt algorithm • Signed Distance Function ( SDF ) Can be pre-computed 13 13
Objective Function • Schmidt et al. → use similar SDF mapping for articulated objects in 3D • θ – pose parameters (state) • x – 3d position (camera frame) • u – pixel index 14 14
Objective Function • Composite SDF for articulated body • k – frame index • T – camera/frame transform 15 15
Optimization 1.Taylor-series expansion (Gauss-Newton approximation) 2.Jacobian computation 3. Iteration Update 16 16
Symmetric Formulation Dealing with Occlusions • Use 'Free Space' to constrain objective function • Augment probability with model- point prediction • SDF of observation constricting model prediction 17 17
HEADER Robotics/courses/CS7442-Computer_Vision/CS7495-presentation/slides/video/optim.mp4#Play Video 18 18
Results – Hand tracking • Parallelized computation (GPU) • Hand-pose dataset (Qian et al. '12) –Models with 26 d.o.f –Frequent, rapid occlusions • Qian et al. , Oikonomidis et. al ICP + PSO Average distance b/w prediction & ground truth (mm) 19 19
Results – Body tracking • EVAL dataset (Ganaparthi et al. '12) –Models with 48 d.o.f –% of joints within 10cm • Ganaparthi et al. –ICP + free-space • Ye & Yang ('14) –GMM –Shape estimation 20 20
Results - Servoing • Grasping with robot manipulator • Provide visual feedback –Updated state to controller • Improved accuracy –3/10 vs 10/10 21 21
Results box/GTRobotics/courses/CS7442-Computer_Vision/CS7495-presentation/slides/video/results.mp4 22 22
HEADER THANK YOU! 23 23
Recommend
More recommend