articulated meshes
play

Articulated Meshes Eric Landreneau Scott Schaefer Texas A&M - PowerPoint PPT Presentation

Simplification of Articulated Meshes Eric Landreneau Scott Schaefer Texas A&M University Introduction Simplification 1,087,716 10,000 faces faces Introduction Articulated meshes Introduction Articulated meshes


  1. Simplification of Articulated Meshes Eric Landreneau Scott Schaefer Texas A&M University

  2. Introduction Simplification 1,087,716 10,000 faces faces

  3. Introduction Articulated meshes

  4. Introduction Articulated meshes    ˆ v ( M v ) k k k

  5. Introduction Articulated meshes    ˆ v ( M v ) k k k M : Bone Transformation Matrix k

  6. Introduction Articulated meshes    ˆ v ( M v ) k k k M : Bone Transformation Matrix k  : Skin Weights k      1 , 0 k k k

  7. Introduction Unsimplified

  8. Introduction Unsimplified

  9. Introduction

  10. Introduction Static simplification

  11. Introduction Static simplification insufficient for deformable models

  12. Quadric Error Functions Basic QEF equation: : i th vertex p in mesh : normal of m th adjacent face

  13. QEF Edge Collapses Q m = Quadric Error Function (distance to plane on face m) Q m

  14. QEF Edge Collapses Q 2 Q 1 Q 3 Q 0 Q 4 Q 5

  15. QEF Edge Collapses Q v = Q 0 + Q 1 + Q 2 + Q 3 + Q 4 + Q 5 Q 2 Q 1 Q 3 Q v Q 0 Q 4 Q 5

  16. QEF Edge Collapses Q v = Q 0 + Q 1 + Q 2 + Q 3 + Q 4 + Q 5 Q v

  17. QEF Edge Collapses

  18. QEF Edge Collapses Q v0

  19. QEF Edge Collapses Q v1

  20. QEF Edge Collapses Q e =Q v0 + Q v1 Q e Q v0 Q v1

  21. QEF Edge Collapses Q e

  22. Our Method Example Poses

  23. Our Method Modify QEF Equation:

  24. Our Method Modify QEF Equation:    ˆ j j v M v k k k

  25. Our Method Modify QEF Equation: T         )        j j j E ( v , M v Q M v i k k k i k k     j k k    ˆ j j v M v k k k

  26. Our Method Modify QEF Equation: T         )        j j j E ( v , M v Q M v i k k k i k k     j k k Problem : equation is quartic Solution : split into alternating quadratic equations

  27. Our Method Quadratic #1 – Solve for position   T                 T j j j min E ( v ) v M Q M v   i k k i k k     v   j k k Hold weights constant and solve for position v

  28. Our Method Quadratic #2 – Solve for weights min  Hold V constant and solve for weights    j j j  V M v M v M v j 0 1 k

  29. Our Method Quadratic #2 – Solve for weights min     subject to 1 k k Hold V constant and solve for weights    j j j  V M v M v M v j 0 1 k

  30. Our Method Quadratic #2 – Solve for weights min       subject to 1 , 0 k k k Hold V constant and solve for weights    j j j  V M v M v M v j 0 1 k

  31. Our Method Alternating minimization

  32. Results Input Poses 240,448 poly

  33. Results 10,000 poly 5,000 poly 2,000 poly

  34. Results Input Poses 206,672 poly

  35. Results

  36. Results Comparison with previous techniques Original deCoro et al. Mohr et al. Ours

  37. Results

  38. Results

  39. Results DeCoro et al.

  40. Results Ours

  41. Results DeCoro et al. Ours

  42. Results Weight Influences

  43. Results Weight reduction Restriction to n weight influences : • Minimize • Prune down to n largest weights • Minimize again

  44. Results Weight Reduction Unconstrained Constrained up to 11 weights/vertex 5 weights/vertex

  45. Results RMS Error Comparison (METRO)

  46. Results

  47. Conclusions • Minimizes both skin weights and vertex positions • Easy to implement (quadratic minimization) • Requires few example poses • Reduces to a specified number of weights everywhere in the hierarchy

  48. Questions?

Recommend


More recommend