towards a scale free electroweak baryogenesis
play

Towards a scale free electroweak baryogenesis Teppei Kitahara U.of - PowerPoint PPT Presentation

Towards a scale free electroweak baryogenesis Teppei Kitahara U.of Tokyo KEK Karlsruhe Collaborators K. Ishikawa, M. Takimoto Based on PRD . 91(2015) 055004, PRL .113(2014) 131801 U.of Toyama theory seminar May 22, 2015,


  1. Towards a scale free electroweak baryogenesis Teppei Kitahara ( U.of Tokyo → KEK → Karlsruhe ) Collaborators : K. Ishikawa, M. Takimoto Based on PRD . 91(2015) 055004, PRL .113(2014) 131801 U.of Toyama theory seminar May 22, 2015, University of Toyama

  2. Standard Model (SM) July 2012, Observation of a Higgs boson particle indiatimes.com Nobel prize, 2013 [CMS-HIG-14-009] [ATLAS-CONF-2015-007] 2 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  3. [ レオ・レオニ フェイスタオル スイミー ] 3 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  4. Anti - MATTER current the Universe MATTER [ レオ・レオニ フェイスタオル スイミー ] 3 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  5. Anti - MATTER current the Universe MATTER [ レオ・レオニ フェイスタオル スイミー ] [ Planck ’14 ] /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  6. Anti - MATTER current the Universe MATTER n B − n ¯ B ∼ 10 − 10 s [ レオ・レオニ フェイスタオル スイミー ] [ Planck ’14 ] /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  7. Observed BAU B aryon A symmetry of the U niverse ( BAU ) Y B ≡ n B − n ¯ B = (0 . 86 ± 0 . 01) × 10 − 10 [ WMAP ’12 , Planck ’14 ] s s = π 2 where B + s × 10 − 10 45 g ∗ T 3 : entropy density n B ∼ n ¯ : massless degrees of freedom ~ O(10 -100) g ∗ n B ∝ a ( t ) − 3 ∝ T 3 Y B is constant during the expansion of the Universe A suitable Big Bang Nucleosynthesis ( BBN ) requires 0 . 4 × 10 − 10 . Y B . 0 . 9 × 10 − 10 [ Copi, et.al. ’95 ] Observed value by Planck/WMAP is consistent with BBN 4 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  8. Observed BAU B aryon A symmetry of the U niverse ( BAU ) Y B ≡ n B − n ¯ B = (0 . 86 ± 0 . 01) × 10 − 10 [ WMAP ’12 , Planck ’14 ] s s = π 2 where B + s × 10 − 10 45 g ∗ T 3 : entropy density n B ∼ n ¯ : massless degrees of freedom ~ O(10 -100) g ∗ n B ∝ a ( t ) − 3 ∝ T 3 Y B is constant during the expansion of the Universe A suitable Big Bang Nucleosynthesis ( BBN ) requires 0 . 4 × 10 − 10 . Y B . 0 . 9 × 10 − 10 Observed value by Planck/WMAP is consistent with with BBN [ Copi, et.al. ’95 ] 4 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  9. Sakharov’s 3 conditions [ Sakharov, ’67 ] The following 3 necessary conditions are required for the Baryogenesis i ) Baryon number violating process ii ) Violation of C and CP symmetries iii ) Out of thermal equilibrium 5 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  10. Sakharov’s 3 conditions [ Sakharov, ’67 ] The following 3 necessary conditions are required for the Baryogenesis i ) Baryon number violating process ii ) Violation of C and CP symmetries iii ) Out of thermal equilibrium SM is satisfied the conditions ( i ) and ( ii ) ( i ) Anomalous process ( sphaleron ) , Next Slide ( ii ) SM dose not have C symmetry, SM has CKM matrix 5 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  11. Sphaleron transitions Anomaly calculations of Baryon number and Lepton number axial current ✓ ◆ ✓ ◆ u L ν ¯ ¯ d R ¯ u R e R d L e L b d a c e B + L 1 / 3 − 1 / 3 − 1 / 3 − 1 1 1 / 3 − 1 / 3 − 1 / 3 − 1 B − L 1 ⇢ 0 ( B + L ) Gauge ∝ 2 a + b + c = SU (3) c 0 ( B − L ) B+L/B - L axial current ⇢ 2 6 = 0 ( B + L ) SU (2) L / 3 a + d = 0 ( B � L ) Gauge ◆ 2 ◆ 2 ✓ 1 ✓ � 2 ✓ 1 ◆ / 6 a + 3 3 U (1) Y 6 3 3 ⇢ � 1 6 = 0 ( B + L ) ✓ � 1 ◆ d + (1) 2 e = + 2 0 ( B � L ) 2 6 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  12. Sphaleron transitions Anomaly calculations of Baryon number and Lepton number axial current ✓ ◆ ✓ ◆ u L ν ¯ ¯ d R ¯ u R e R d L e L b d a c e B + L 1 / 3 − 1 / 3 − 1 / 3 − 1 1 1 / 3 − 1 / 3 − 1 / 3 − 1 B − L 1 ⇢ 0 ( B + L ) Gauge ∝ 2 a + b + c = SU (3) c 0 ( B − L ) B+L/B - L B - L axial current is axial current anomaly free in ⇢ 2 6 = 0 ( B + L ) SU (2) L the SM, but B+L / 3 a + d = 0 ( B � L ) axial current is Gauge anomalous ◆ 2 ◆ 2 ✓ 1 ✓ � 2 ✓ 1 ◆ / 6 a + 3 3 U (1) Y 6 3 3 ⇢ � 1 6 = 0 ( B + L ) ✓ � 1 ◆ d + (1) 2 e = + 2 0 ( B � L ) 2 6 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  13. Sphaleron transitions B+L chiral anomaly 3 ⇣ ⌘ g 2 Tr( F µ ν ˜ F µ ν ) − g 0 2 B µ ν ˜ ∂ µ j µ, 5 B + L = B µ ν 16 π 2 F µ ν ≡ 1 where 2 ✏ µ νρσ F ρσ SU ( 2 ) gauge field has a topologically non - trivial field configuration in 3 ( 4 ) dimensional Euclidean space sphaleron ( instanton ) solution thermal tunneling V ( sphaleron ) ∝ B+L # Winding # -1 2 0 1 vacuum tunneling [ ’t Hooft ’76 ] ( instanton ) 7 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  14. Sphaleron transition rate Sphaleron process is a non - perturbative 9 left handed quarks and 3 left handed lepton vertex ∆ B = 3 ∆ L = 3 [ Illustrated by Morrissey, Ramsey - Musolf ] condition ( i ) ! T C : Electroweak phase transition temperature T > T C ( Symmetric vacuum, massless weak bosons ) Γ sph ∼ α 4 W T At high temperature, the sphaleron process is always active 8 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  15. Sphaleron decoupling condition Once electroweak symmetry is broken, the sphaleron process becomes decouple ( Breaking vacuum, massive weak bosons ) T < T C √ " # − 24 2 π v Γ sph ∼ T Exp ⌧ H ( T ) g T Decouple! ∆ B = 3 − 8 π 2 ✓ ◆ Γ ins ∼ 1 cf. R Exp g 2 ∆ L = 3 Decoupling condition v C > T C ∼ 0 . 9 [Funakubo, Senaha ’09 ] v C & 0 . 9 : Condition of a “ strongly ” 1 st order phase transition T C 9 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  16. Electroweak Baryogenesis [ Kuzmin, Rubakov, Shaposhnikov ’85, Shaposhnikov ’86, ’87 ] Electroweak Baryogenesis ( EWBG ) is one of the baryogenesis scenarios A first order phase transition involved with electroweak symmetry breaking gives the out of thermal equilibrium V Experimentally testable scenario v EW thermal tunneling Bubble expansion thermal tunneling [ ’t Hooft ’76 ] [ Illustrated by Morrissey, Ramsey - Musolf ] [ Morrissey, Ramsey - Musolf ’12 ] 10 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  17. Electroweak Baryogenesis [ Kuzmin, Rubakov, Shaposhnikov ’85, Shaposhnikov ’86, ’87 ] h φ i = 0 Bubble W all h φ i 6 = 0 Symmetric vacuum Breaking vacuum ① Interaction between matter and bubble generate spacial CP ( Baryon ) asymmetric distribution ② Baryon # is fixed because Baryon number sphaleron process is decoupled violation v C Bubble W all & 0 . 9 when T C [ ’t Hooft ’76 ] [ Morrissey, Ramsey - Musolf ’12 ] 11 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  18. Electroweak Baryogenesis Within the standard model, EWBG mechanism can not be realized m h . 70 GeV , CKM phase is insu ffi cient [ Bochkarev, Shaposhnikov ’87, Kajantie, Laine, Rummukainen, Shaposhnikov ’96 ] Within the MSSM, EWBG mechanism is still alive, but severe t R . 110 GeV t L � 50 TeV , m ˜ m ˜ [ Carena, Nardini, Quiros, W agner ’13 ] σ ( gg → h ) が 2.5 倍以上。和らげるには Br ( h → inv. ) > 30 - 60 % → excluded by global fit... Higgs ( scalar ) sector extended models can achieve the electroweak phase transition easily MSSM+singlet, 2HDM, SM + complex singlet, etc... Constraints: EDM, direct search for additional scalar, Higgs coupling, Bphys. etc... These scenario are alive and testable by the future experiments! 12 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

  19. Electroweak Baryogenesis Within the standard model, EWBG mechanism can not be realized m h . 70 GeV , CKM phase is insu ffi cient [ Bochkarev, Shaposhnikov ’87, Kajantie, Laine, Rummukainen, Shaposhnikov ’96 ] Within the MSSM, EWBG mechanism is still alive, but severe t R . 110 GeV t L � 50 TeV , m ˜ m ˜ [ Carena, Nardini, Quiros, W agner ’13 ] σ ( gg → h ) が 2.5 倍以上。和らげるには Br ( h → inv. ) > 30 - 60 % → excluded by global fit... Higgs ( scalar ) sector extended models can achieve the electroweak phase transition easily MSSM+singlet, 2HDM, SM + complex singlet, etc... Constraints: EDM, direct search for additional scalar, Higgs coupling, Bphys. etc... These scenario are alive and testable by the future experiments! 12 /45 May 22, 2015, Theory Seminar, University of Toyama, Teppei KITAHARA - KEK

Recommend


More recommend