towards a regular theory of parameterized concurrent
play

Towards a Regular Theory of Parameterized Concurrent Systems - PowerPoint PPT Presentation

Towards a Regular Theory of Parameterized Concurrent Systems Benedikt Bollig Laboratoire Spcification et Vrification ENS Cachan & CNRS, France Reports on joint works with Paul Gastin, Akshay Kumar, and Jana Schubert. ACTS


  1. Parameterized Communicating Automata (PCA) over Rings r l r l r l l r s 0 s 0 r !1 l ?0 r !1 l ?0 s 0 s 0 l ?1 l ?1 r !1 l ?0 r !1 l ?0 l ?1 l ?1 s 1 s 2 s 3 s 1 s 2 s 3 r !0 r !0 s 1 s 2 s 3 s 1 s 2 s 3 l ?0 r !1 r !0 l ?0 r !1 r !0 r !0 r !0 l ?0 r !1 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 4

  2. Parameterized Communicating Automata (PCA) over Rings r l r l r l l r s 0 s 0 r !1 l ?0 r !1 l ?0 s 0 s 0 l ?1 l ?1 r !1 l ?0 r !1 l ?0 l ?1 l ?1 s 1 s 2 s 3 s 1 s 2 s 3 r !0 r !0 s 1 s 2 s 3 s 1 s 2 s 3 l ?0 r !1 r !0 l ?0 r !1 r !0 r !0 r !0 l ?0 r !1 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 4

  3. Parameterized Communicating Automata (PCA) over Rings r l r l r l l r s 0 s 0 r !1 l ?0 r !1 l ?0 s 0 s 0 l ?1 l ?1 r !1 l ?0 r !1 l ?0 l ?1 l ?1 s 1 s 2 s 3 s 1 s 2 s 3 r !0 r !0 s 1 s 2 s 3 s 1 s 2 s 3 l ?0 r !1 r !0 l ?0 r !1 r !0 r !0 r !0 l ?0 r !1 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 4

  4. Parameterized Communicating Automata (PCA) over Rings r l r l r l l r s 0 s 0 r !1 l ?0 r !1 l ?0 s 0 s 0 l ?1 l ?1 r !1 l ?0 r !1 l ?0 l ?1 l ?1 s 1 s 2 s 3 s 1 s 2 s 3 r !0 r !0 s 1 s 2 s 3 s 1 s 2 s 3 l ?0 r !1 r !0 l ?0 r !1 r !0 r !0 r !0 l ?0 r !1 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 4

  5. Parameterized Communicating Automata (PCA) over Rings r l r l r l l r s 0 s 0 r !1 l ?0 r !1 l ?0 s 0 s 0 l ?1 l ?1 r !1 l ?0 r !1 l ?0 l ?1 l ?1 s 1 s 2 s 3 s 1 s 2 s 3 r !0 r !0 s 1 s 2 s 3 s 1 s 2 s 3 l ?0 r !1 r !0 l ?0 r !1 r !0 r !0 r !0 l ?0 r !1 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 4

  6. Parameterized Communicating Automata (PCA) over Rings r l r l r l l r s 0 s 0 r !1 l ?0 r !1 l ?0 s 0 s 0 l ?1 l ?1 r !1 l ?0 r !1 l ?0 l ?1 l ?1 s 1 s 2 s 3 s 1 s 2 s 3 r !0 r !0 s 1 s 2 s 3 s 1 s 2 s 3 l ?0 r !1 r !0 l ?0 r !1 r !0 r !0 r !0 l ?0 r !1 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 4

  7. Parameterized Communicating Automata (PCA) over Rings r l r l r l l r s 0 s 0 r !1 l ?0 r !1 l ?0 s 0 s 0 l ?1 l ?1 r !1 l ?0 r !1 l ?0 l ?1 l ?1 s 1 s 2 s 3 s 1 s 2 s 3 r !0 r !0 s 1 s 2 s 3 s 1 s 2 s 3 l ?0 r !1 r !0 l ?0 r !1 r !0 r !0 r !0 l ?0 r !1 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 4

  8. Parameterized Communicating Automata (PCA) over Rings r l r l r l l r s 0 s 0 r !1 l ?0 r !1 l ?0 s 0 s 0 l ?1 l ?1 r !1 l ?0 r !1 l ?0 l ?1 l ?1 s 1 s 2 s 3 s 1 s 2 s 3 r !0 r !0 s 1 s 2 s 3 s 1 s 2 s 3 l ?0 r !1 r !0 l ?0 r !1 r !0 r !0 r !0 l ?0 r !1 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 4

  9. Parameterized Communicating Automata (PCA) over Rings r l r l r l l r s 0 s 0 r !1 l ?0 r !1 l ?0 s 0 s 0 l ?1 l ?1 r !1 l ?0 r !1 l ?0 l ?1 l ?1 s 1 s 2 s 3 s 1 s 2 s 3 r !0 r !0 s 1 s 2 s 3 s 1 s 2 s 3 l ?0 r !1 r !0 l ?0 r !1 r !0 r !0 r !0 l ?0 r !1 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 4

  10. Parameterized Communicating Automata (PCA) over Rings r l s 6 r s 4 l r l l r s 5 s 6 s 0 s 0 r !1 l ?0 r !1 l ?0 s 0 s 0 l ?1 l ?1 r !1 l ?0 r !1 l ?0 l ?1 l ?1 s 1 s 2 s 3 s 1 s 2 s 3 r !0 r !0 s 1 s 2 s 3 s 1 s 2 s 3 l ?0 r !1 r !0 l ?0 r !1 r !0 r !0 r !0 l ?0 r !1 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 4

  11. Parameterized Communicating Automata (PCA) over Rings r l s 6 r s 4 l r l l r s 5 s 6 s 0 s 0 r !1 l ?0 r !1 l ?0 s 0 s 0 l ?1 l ?1 Acceptance condition: � r !1 l ?0 r !1 l ?0 MSO formula over rings whose nodes are labeled with states. � l ?1 l ?1 r l y s ( x ) s 1 s 2 s 3 s 1 s 2 s 3 Signature: � x � r !0 r !0 s 1 s 2 s 3 s 1 s 2 s 3 l ?0 r !1 r !0 l ?0 r !1 r !0 Thus, there are no constant processes (e.g., no «first» or «last» process). r !0 r !0 l ?0 r !1 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 4

  12. Parameterized Communicating Automata (PCA) over Rings r l 9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y ))) s 6 r s 4 l r l l r s 5 s 6 s 0 s 0 r !1 l ?0 r !1 l ?0 s 0 s 0 l ?1 l ?1 r !1 l ?0 r !1 l ?0 l ?1 l ?1 s 1 s 2 s 3 s 1 s 2 s 3 r !0 r !0 s 1 s 2 s 3 s 1 s 2 s 3 l ?0 r !1 r !0 l ?0 r !1 r !0 r !0 r !0 l ?0 r !1 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 4

  13. Parameterized Communicating Automata (PCA) over Rings r l | 9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y ))) s 6 r = s 4 l r l l r s 5 s 6 s 0 s 0 r !1 l ?0 r !1 l ?0 s 0 s 0 l ?1 l ?1 r !1 l ?0 r !1 l ?0 l ?1 l ?1 s 1 s 2 s 3 s 1 s 2 s 3 r !0 r !0 s 1 s 2 s 3 s 1 s 2 s 3 l ?0 r !1 r !0 l ?0 r !1 r !0 r !0 r !0 l ?0 r !1 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 4 4

  14. Parameterized Communicating Automata (PCA) over Rings r l | 9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y ))) s 6 r = s 4 l r l l r s 5 s 6 s 0 s 0 r !1 l ?0 r !1 l ?0 s 0 s 0 l ?1 l ?1 r !1 l ?0 r !1 l ?0 l ?1 l ?1 s 1 s 2 s 3 s 1 s 2 s 3 r !0 r !0 s 1 s 2 s 3 s 1 s 2 s 3 l ?0 r !1 r !0 l ?0 r !1 r !0 r !0 r !0 l ?0 r !1 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 4 Token-Ring Protocol 4

  15. Parameterized Communicating Automata (PCA) over Rings r l | 9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y ))) s 6 s 6 r = l r l l r s 5 s 4 s 0 s 0 r !1 l ?0 r !1 l ?0 s 0 s 0 l ?1 l ?1 r !1 l ?0 r !1 l ?0 l ?1 l ?1 s 1 s 2 s 3 s 1 s 2 s 3 r !0 r !0 s 1 s 2 s 3 s 1 s 2 s 3 l ?0 r !1 r !0 l ?0 r !1 r !0 r !0 r !0 l ?0 r !1 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 4 4

  16. Parameterized Communicating Automata (PCA) over Rings r l 6 | = 9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y ))) s 6 r s 4 l r l l r s 6 s 4 s 0 s 0 r !1 l ?0 r !1 l ?0 s 0 s 0 l ?1 l ?1 r !1 l ?0 r !1 l ?0 l ?1 l ?1 s 1 s 2 s 3 s 1 s 2 s 3 r !0 r !0 s 1 s 2 s 3 s 1 s 2 s 3 l ?0 r !1 r !0 l ?0 r !1 r !0 r !0 r !0 l ?0 r !1 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 s 4 s 5 s 6 47 47 4

  17. Parameterized Communicating Automata (PCA) over Rings s 0 l ?0 r !1 l ?1 L s 1 s 3 s 2 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y ))) 5

  18. Parameterized Communicating Automata (PCA) over Rings     l r                                 s 0           l ?0 r !1   l ?1       = L       s 1 s 3 s 2   r !0   l ?0 r !1 r !0               s 4 s 5 s 6         9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y )))                                 5

  19. Parameterized Communicating Automata (PCA) over Rings     l r                                 s 0           l ?0 r !1   l ?1       = L       s 1 s 3 s 2   r !0   l ?0 r !1 r !0               s 4 s 5 s 6         9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y )))                                 5

  20. Parameterized Communicating Automata (PCA) over Rings     l r                                 s 0           l ?0 r !1   l ?1       = L       s 1 s 3 s 2   r !0   l ?0 r !1 r !0               s 4 s 5 s 6         9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y )))                                 5

  21. Parameterized Communicating Automata (PCA) over Rings     l r                                 s 0           l ?0 r !1   l ?1       = L       s 1 s 3 s 2   r !0   l ?0 r !1 r !0               s 4 s 5 s 6         9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y )))                           …       5

  22. Complementation s 0 l ?0 r !1 l ?1 L s 1 s 3 s 2 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y ))) 6

  23. Complementation                                     s 0           l ?0 r !1   l ?1       = L       s 1 s 3 s 2   r !0   l ?0 r !1 r !0               s 4 s 5 s 6         9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y )))                                 6

  24. Complementation                                     s 0           l ?0 r !1   l ?1       = L       s 1 s 3 s 2   r !0   l ?0 r !1 r !0               s 4 s 5 s 6         9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y )))                                 6

  25. Complementation                                     s 0           l ?0 r !1   l ?1       = L       s 1 s 3 s 2   r !0   l ?0 r !1 r !0               s 4 s 5 s 6         9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y )))                                 6

  26. Complementation                                     s 0           l ?0 r !1   l ?1       = L       s 1 s 3 s 2   r !0   l ?0 r !1 r !0               s 4 s 5 s 6         9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y )))                                 6

  27. Complementation                                     s 0           l ?0 r !1   l ?1       = L       s 1 s 3 s 2   r !0   l ?0 r !1 r !0               s 4 s 5 s 6         9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y )))                           …       6

  28. Negative Results Theorem [B.-Gastin-Kumar; FSTTCS 2014]: � PCAs over rings are not complementable. 7

  29. Negative Results Theorem [B.-Gastin-Kumar; FSTTCS 2014]: � PCAs over rings are not complementable. Proof: … … … … … … … … … 7

  30. Negative Results Theorem [B.-Gastin-Kumar; FSTTCS 2014]: � PCAs over rings are not complementable. Proof: … … … … … … … … … … … … … … … Behaviors encode grids. 7

  31. Negative Results Theorem [B.-Gastin-Kumar; FSTTCS 2014]: � PCAs over rings are not complementable. Proof: … … … … … … … … … … … … … … … Behaviors encode grids. Grid automata are not closed under complementation [Matz-Schweikardt-Thomas ’02]. 7

  32. Negative Results Theorem [B.-Gastin-Kumar; FSTTCS 2014]: � PCAs over rings are not complementable. Proof: … … … … … … … … … … … … … … … Behaviors encode grids. Grid automata are not closed under complementation [Matz-Schweikardt-Thomas ’02]. Theorem [Emerson-Namjoshi 2003]: � Emptiness is undecidable for PCAs over rings � (even token-passing systems, unless ). | Msg | = 1 7

  33. Negative Results Theorem [B.-Gastin-Kumar; FSTTCS 2014]: � PCAs over rings are not complementable. Proof: … … … … … … … … … … … … … … … Behaviors encode grids. Grid automata are not closed under complementation [Matz-Schweikardt-Thomas ’02]. Theorem [Emerson-Namjoshi 2003]: � Emptiness is undecidable for PCAs over rings � (even token-passing systems, unless ). | Msg | = 1 7

  34. Context-Bounded PCAs 8

  35. Context-Bounded PCAs Idea: Every process is contrained to a bounded number of contexts. 8

  36. Context-Bounded PCAs Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results. 8

  37. Context-Bounded PCAs Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results. Here: Process only sends XOR only receives from one fixed neighbor. 8

  38. Context-Bounded PCAs Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results. Here: Process only sends XOR only receives from one fixed neighbor. 8

  39. Context-Bounded PCAs Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results. Here: Process only sends XOR only receives from one fixed neighbor. 8

  40. Context-Bounded PCAs Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results. Here: Process only sends XOR only receives from one fixed neighbor. 8

  41. Context-Bounded PCAs Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results. Here: Process only sends XOR only receives from one fixed neighbor. 8

  42. Context-Bounded PCAs Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results. Here: Process only sends XOR only receives from one fixed neighbor. 8

  43. Context-Bounded PCAs Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results. Here: Process only sends XOR only receives from one fixed neighbor. 8

  44. Context-Bounded PCAs Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results. Here: Process only sends XOR only receives from one fixed neighbor. 8

  45. Context-Bounded PCAs Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results. Here: Process only sends XOR only receives from one fixed neighbor. 8

  46. Context-Bounded PCAs Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results. Here: Process only sends XOR only receives from one fixed neighbor. 3-bounded 8

  47. Context-Bounded PCAs s 0 r !1 l ?0 l ?1 s 1 s 2 s 3 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y ))) Definition: A PCA is k -bounded if the finite automaton restricts to k contexts. 9

  48. Context-Bounded PCAs s 0 r !1 l ?0 l ?1 s 1 s 2 s 3 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y ))) 2-bounded PCA Definition: A PCA is k -bounded if the finite automaton restricts to k contexts. 9

  49. Context-Bounded PCAs s 0 r !1 l ?0 l ?1 s 1 s 2 s 3 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y ))) 2-bounded PCA Definition: A PCA is k -bounded if the finite automaton restricts to k contexts. Theorem [B.-Gastin-Kumar; FSTTCS 2014]: � A L ( B ) = L ( A ) For every bounded PCA , there is a PCA such that . B 9

  50. Proof Outline disambiguation � nondeterminism complementation every behavior has a unique run s 0 r !1 l ?0 l ?1 s 1 s 2 s 3 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y ))) k -bounded 10

  51. Proof Outline disambiguation � nondeterminism complementation every behavior has a unique run s 0 r !1 l ?0 l ?1 A s 1 s 2 s 3 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 ϕ 9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y ))) k -bounded 10

  52. Proof Outline disambiguation � nondeterminism complementation every behavior has a unique run s 0 r !1 l ?0 l ?1 ! A A s 1 s 2 s 3 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 ϕ ¬ ϕ 9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y ))) k -bounded 10

  53. Proof Outline disambiguation � nondeterminism complementation every behavior has a unique run s 0 r !1 l ?0 l ?1 ? ! A A s 1 s 2 s 3 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 ϕ ¬ ϕ 9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y ))) k -bounded Powerset construction not applicable due to message contents. 10

  54. Proof Outline disambiguation � nondeterminism complementation every behavior has a unique run s 0 r !1 l ?0 l ?1 ? ! A A s 1 s 2 s 3 r !0 l ?0 r !1 r !0 s 4 s 5 s 6 ϕ ¬ ϕ 9 x ( s 4 ( x ) ^ 8 y ( y 6 = x ! s 5 ( y ) _ s 6 ( y ))) k -bounded Powerset construction not applicable due to message contents. Disambiguation through summaries: � Alur-Madhusudan: Visibly pushdown languages. STOC 2004. La Torre-Madhusudan-Parlato: The language theory of bounded context switching. LATIN 2010. La Torre-Napoli-Parlato: Scope-bounded pushdown languages. DLT 2014. 10

  55. Disambiguation of context-bounded PCAs 11

  56. Disambiguation of context-bounded PCAs 11

  57. Disambiguation of context-bounded PCAs 11

  58. Disambiguation of context-bounded PCAs 11

  59. Disambiguation of context-bounded PCAs 11

  60. Disambiguation of context-bounded PCAs Every process traverses a bounded number of zones. 11

  61. Disambiguation of context-bounded PCAs Every process traverses a bounded number of zones. Zone numbers can be computed unambiguously by a PCA. 11

  62. Disambiguation of context-bounded PCAs 0, 0 ,0 0, 0 ,0 0, 0 ,0 0, 0 ,0 Every process traverses a bounded number of zones. Zone numbers can be computed unambiguously by a PCA. 11

  63. Disambiguation of context-bounded PCAs 0, 0 ,0 0, 0 ,0 0, 0 ,0 0, 0 ,0 r l 0, 1 ,1 1, 1 ,1 2, 1 ,0 1, 2 ,1 Every process traverses a bounded number of zones. Zone numbers can be computed unambiguously by a PCA. 11

  64. Disambiguation of context-bounded PCAs 0, 0 ,0 0, 0 ,0 0, 0 ,0 0, 0 ,0 r l 0, 1 ,1 1, 1 ,1 2, 1 ,0 1, 2 ,1 Every process traverses a bounded number of zones. Zone numbers can be computed unambiguously by a PCA. 11

  65. Disambiguation of context-bounded PCAs 0, 0 ,0 0, 0 ,0 0, 0 ,0 0, 0 ,0 r l 0, 1 ,1 1, 1 ,1 2, 1 ,0 1, 2 ,1 6 = Every process traverses a bounded number of zones. Zone numbers can be computed unambiguously by a PCA. 11

  66. Disambiguation of context-bounded PCAs 0, 0 ,0 0, 0 ,0 0, 0 ,0 0, 0 ,0 r l 0, 1 ,1 1, 1 ,1 2, 1 ,0 1, 2 ,1 1, 2 ,3 2, 3 ,1 Every process traverses a bounded number of zones. Zone numbers can be computed unambiguously by a PCA. 11

  67. Disambiguation of context-bounded PCAs 0, 0 ,0 0, 0 ,0 0, 0 ,0 0, 0 ,0 r l 0, 1 ,1 1, 1 ,1 2, 1 ,0 1, 2 ,1 1, 2 ,3 2, 3 ,1 2, 2 ,3 0, 2 ,2 Every process traverses a bounded number of zones. Zone numbers can be computed unambiguously by a PCA. 11

  68. Disambiguation of context-bounded PCAs 0, 0 ,0 0, 0 ,0 0, 0 ,0 0, 0 ,0 r l 0, 1 ,1 1, 1 ,1 2, 1 ,0 1, 2 ,1 1, 2 ,3 2, 3 ,1 2, 2 ,3 0, 2 ,2 2, 2 ,3 2, 3 ,1 Every process traverses a bounded number of zones. Zone numbers can be computed unambiguously by a PCA. 11

  69. Disambiguation of context-bounded PCAs R 1 R 3 R i ⊆ S 3 × S 3 R 2 11

  70. Disambiguation of context-bounded PCAs R 1 R 3 R i ⊆ S 3 × S 3 R 2 Every process traverses a bounded number of zones. Zone numbers can be computed unambiguously. Sending processes deterministically compute summaries for zones. 11

  71. Disambiguation of context-bounded PCAs R 1 R 3 R i ⊆ S 3 × S 3 R 2 Every process traverses a bounded number of zones. Zone numbers can be computed unambiguously. Sending processes deterministically compute summaries for zones. 11

  72. Disambiguation of context-bounded PCAs R 1 R 3 R i ⊆ S 3 × S 3 R 2 Every process traverses a bounded number of zones. Zone numbers can be computed unambiguously. Sending processes deterministically compute summaries for zones. Acceptance condition checks if summaries correspond to accepting run. 11

  73. Disambiguation of context-bounded PCAs R 1 R 3 R i ⊆ S 3 × S 3 R 2 Every process traverses a bounded number of zones. Zone numbers can be computed unambiguously. Sending processes deterministically compute summaries for zones. Acceptance condition checks if summaries correspond to accepting run. 11

  74. Disambiguation of context-bounded PCAs R 1 R 3 R i ⊆ S 3 × S 3 R 2 Every process traverses a bounded number of zones. Zone numbers can be computed unambiguously. Sending processes deterministically compute summaries for zones. Acceptance condition checks if summaries correspond to accepting run. 11

Recommend


More recommend