) ) ) toward high precision nuclear spectroscopy at SLOWRI, RIKEN RIBF already introduced in JCNP in Shanghai 2007 Michiharu Wada, KEK IPNS Wako Nuclear Science Center & RIKEN Nishina Center RIBF Experiment Building RIBF Experiment Building hardware has constructed!! Existing Facility prototype SLOWRI SLOWRI (Universal SLOW RI-beam facility) SCRIT SRC SRC ( Superconducting ring cyclotron Superconducting ring cyclotron ) RIPS SAMURAI Zero-Degree Mass Ring SHARAQ fRC fRC Fixed frequency ring cyclotron ) ( Fixed frequency ring cyclotron BigRIPS BigRIPS IRC IRC (Projectile Fragment Separator) (Projectile Fragment Separator) ( Intermediate ring cyclotron Intermediate ring cyclotron ) New Facility RIBF Accelerator Building RIBF Accelerator Building RI Beam Factory
Mission of RIBF “Constructing an Ultimate Nuclear Model” “Try to Clarify the Origin of Elements” “Applications”
What is Ultimate Nuclear Model? A nuclear model that describes all properties of all atomic nuclei. We are very much behind the goal. Not sure whether it is possible or not. “An atomic nucleus is an elephant” Jacek Dobaczewski no way to describe an atomic nucleus with a few parameters
Z Measured Expected Nuclides @ SLOWRI ≈ 3000 Mass Known N Optically Our knowledge on atomic nuclei is very limited 46 elements, 600 nuclides U “many new isotopes, we Bi Pb Pb Pb Pb Tl Tl Hg HgHgHgHg Hg Hg only know # of p and n” Au Pt Pt Pt Pt Pt Ir Ir OsOs OsOs Os Re W W W (J. Äysto) Ta Hf Hf Hf Hf Hf Lu Yb Yb Yb Yb Yb Yb Yb Tm Er Er Er Er Er Er Ho Dy Dy Dy Dy Dy Dy Dy Tb GdGdGd GdGd Gd Eu Eu Sm Sm Sm Sm NdNd NdNd Nd Pr Ce Ce Ce La Ba Ba Ba Ba Ba Ba Ba Cs Xe Xe Xe Xe Xe Xe Xe I Te Te Te Te Te Sb Sb Sn Sn Sn Sn Sn Sn Sn Sn Sn Sn Sn In Cd Cd CdCd Cd Cd Cd Ag Ag Pd Pd Pd Pd Pd Pd Rh Ru RuRu RuRuRu Ru Mo MoMoMo MoMo Nb Zr Zr Zr Zr Y Sr Sr Sr Sr Rb Kr Kr Kr Kr Kr Kr (Precision) Br Br Se Se Se Se Se As Ge GeGeGe Ge Ga Ga Zn Zn Zn Zn Cu Cu Ni Ni Ni Ni Ni Ni Co Fe Fe Fe Fe Mn Cr Cr Cr V Ti Ti Ti Ti Ti Sc Ca Ca CaCa Ca K K Ar Ar Ar Cl Cl S S S S P Si Si Si Al MgMgMg Na Ne NeNe F O O O N N C C B B Be Li Li HeHe H H Universal Low-Energy RI-beam Precise Ground State Properties: is essential !
Element synthesis in universe Explosive Neutron Absorption Equivillium Mass、T1/2、 Pn、σ... Mass N Z Langanke Comprehensive Measurements of Mass, T 1/2 , Pn, ...
static properties Radii, Spin, Moments, ... Decay studies Mass measurements Slow or Trapped pure RI } ion traps pure, thin source optical spectroscopy 900 850 800 counts / bin 750 700 650 600 550 Laser cooled Be ions 340 360 380 400 420 Microwave Frequency [kHz] - 2677 MHz in trap Penning Trap Mass Hyperfine structure Spectrometer spectroscopy of trapped Be ion
to perform comprehensive high precision nuclear spectroscopy Trapped or low-energy RI with • Universality: All Elements, Short-lived Nuclei • High Purity • Beam Availability: Parasitic capability
> Universality Ordinary ISOL Facilities Limited Elements Bi PbPbPb Bi Tl Tl Pb Pb Pb Hg HgHgHg Hg Hg Hg Tl Tl Hg Hg Hg HgHgHg Hg Au Au Pt Pt Pt Pt Pt Ir Ir Pt Pt Pt Pt Pt ISOLDE (SC-fact) Os Os OsOs Os Ir Ir OsOs Os Os Os Re W W W Re W W W Ta Hf Hf Hf Hf Hf Ta Lu Hf Hf Hf Hf Hf RI-Beam Yield Yb YbYbYb Yb Yb Yb Lu Yb Yb Yb YbYbYb Yb Tm Er Er Er Er Er Er Tm Er Er Er Er Er Er Ho Dy Dy Dy DyDy Dy Dy Ho Tb Dy Dy Dy Dy Dy Dy Dy http://www.cern.ch/ISOLDE/ Tb Gd Gd Gd GdGd Gd GdGdGd GdGd Gd Eu Eu Sm Sm Sm Sm Eu Eu normal/isoprodsc.html Sm Sm Sm Sm NdNd Nd Nd Nd Pr Nd Nd NdNd Nd Pr Ce Ce Ce 10^7 cps La Ce Ce Ce All Elements Ba Ba Ba Ba Ba BaBa La Cs Ba Ba BaBa Ba BaBa Cs Xe XeXeXe Xe Xe Xe 10^5 cps I Xe Xe XeXe XeXe Xe I Te Te Te TeTe Te Te Te Te Te Sb Sb Sn SnSn Sn SnSnSnSn Sn Sn Sb Sb 10^3 cps Sn SnSn SnSn Sn SnSn Sn Sn In In Cd Cd CdCdCd Cd Cd Ag Ag Cd Cd Cd CdCd Cd Cd Ag Ag Pd PdPd Pd Pd Pd In-Flight Separators 10^1 cps Rh Pd PdPdPd Pd Pd Z Ru Ru RuRuRuRu Ru Rh Ru RuRu Ru RuRu Ru Mo MoMo Mo MoMo @1 µ A-p Nb Mo MoMoMo Mo Mo Nb Zr Zr Zr Zr High Energy RI-beams Zr Zr Zr Zr Y Sr Sr Sr Sr Y Sr Sr Sr Sr Rb Rb Kr Kr Kr Kr Kr Kr Kr Kr Kr Kr Kr Kr Br Br Se Se SeSe Se Br Br Se SeSe Se Se As Ge GeGe Ge Ge As Ge GeGeGe Ge Ga Ga Zn Zn ZnZn Ga Ga Zn Zn Zn Zn Cu Cu Cu Cu Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni Co RIBF (estimation) Fe Fe FeFe Co Fe Fe Fe Fe Mn Mn Cr Cr Cr V Cr Cr Cr V Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti RI-Beam Yield Sc Ca CaCa Ca Ca Sc Z K K Ca CaCaCa Ca K K Ar Ar Ar Cl Cl Ar Ar Ar Cl Cl S S S S S S S S P >10^3 listed 10^9 cps Si Si Si P Si Si Si Al Al Mg MgMg Na MgMg Mg 10^7 cps Na Intensity code, NeNe Ne F NeNeNe O O O F N N O O O (600MeV/u, 1p µ A) N N 10^5 cps C C B B C C B B Be Li Li Be T. Nakamura 10^3 cps HeHe Li Li H H He He H H N All Element Species No chemical process N All lifetime Nuclides In-Flight Separation Stopping & Cooling of RI-Beams in He Gas 100 MeV/u RI beam ISOL Heavy Ion Cyclotron Fragment SPIG Separator All Nuclides, Fast(<<ms) Degrader ~1MeV/u RF IonGuide pure slow RI but High Energy ( ≈ 50%c) - - to experiments In Target, Diffusion, + + Eeff - - RF Carpet Evaporation, Ionization Edc + - Target + + Difficult for Refractory or - - Fragments of heavy ions + Chemically Active Elements All go through the target
Purity: Isobaric Contamination Bi Pb Pb Pb Tl Tl Hg Hg Hg HgHg Hg Hg Au Pt Pt Pt Pt Pt Ir Ir OsOs Os Os Os ISOL Re W W W Ta Hf Hf Hf Hf Hf Lu Yb Yb Yb YbYb Yb Yb Tm A’ Er Er Er Er Er Er Ho Dy Dy Dy Dy Dy Dy Dy Tb GdGd Gd GdGd Gd Eu Eu Sm Sm Sm Sm Strong Alkaline Isobaric Nd Nd Nd Nd Nd Pr Ce Ce Ce La Contamination Ba Ba BaBa Ba BaBa Cs Xe Xe XeXe Xe Xe Xe I Te Te TeTe Te Sb Sb Sn SnSn SnSn Sn SnSn Sn Sn A In Cd Cd Cd CdCd Cd Cd Ag Ag Pd Pd Pd Pd Pd Pd Rh Ru RuRu Ru RuRu Ru Mo MoMoMo MoMo Nb Zr Zr Zr Zr Y SLOWRI Sr Sr Sr Sr Rb Kr Kr Kr Kr Kr Kr Br Br Se SeSe Se Se As Ge Ge Ge Ge Ge Ga Ga Zn Zn Zn Zn Cu Cu In-Flight Separator + ISOL Ni Ni Ni Ni Ni Co Fe Fe Fe Fe Mn Cr Cr Cr V Ti Ti Ti Ti Ti Sc Ca Ca CaCa Ca N K K Ar Ar Ar Cl Cl S S S S P Si Si Si Al MgMgMg Na Ne NeNe A F O O O N N C C B B Be Li Li He He H H A/Z three orthogonal separation A
Availability Yb YbY An Inconvenient Truth Tm Er Er Er Er Er Ho Dy Dy DyDy Dy Dy Dy Tb Gd Gd Gd Gd Gd Gd Eu Eu Sm Sm Sm Sm Nd Nd Nd Nd Nd Many nuclides are Pr Ce Ce Ce A/Z=-5% La Ba Ba BaBa Ba Ba Ba simultaneously produced from Cs Xe Xe Xe Xe Xe Xe Xe I Te Te Te Te Te a single ion beam Sb Sb Sn Sn Sn Sn Sn SnSn Sn Sn Sn In Cd Cd Cd CdCd Cd Cd Ag Ag >99.9% are simply A/Z=+5% Pd Pd Pd Pd Pd Pd Rh Ru Ru Ru Ru RuRu Ru abandoned! Mo MoMoMo MoMo Nb Zr Zr Zr Zr Y Sr Sr Sr Sr Rb Kr Kr Kr Kr Kr Kr Xe 0.5 pu " A Br Br Se Se Se Se Se (3*10^12 pps) As Ge Ge GeGe Ge Ga Ga Zn Zn Zn Zn Cu Cu Ni Ni Ni Ni Ni Co Fe Fe Fe Fe Mn Cr Cr Cr V Ti Ti Ti Ti Ti Sc Ca Ca Ca Ca Ca 1 Gpps K K Ar Ar Ar Cl Cl S S S S P 1 Mpps Si Si Si Al MgMgMg Na 1 kpps NeNe Ne F O O O N N C C When other one plays with 78Ni, 1 pps B B Be Li Li Many nuclides are freely available at F1 or F2 slits He He 1 mpps H H
> for Universality Stopping & Cooling of RI-Beams in He Gas 100 MeV/u RI beam ISOL Heavy Ion Cyclotron Fragment SPIG Separator Degrader ~1MeV/u RF IonGuide pure slow RI - - to experiments + + Eeff - - RF Carpet Edc + + - - Target + + - - Fragments of heavy ions + All go through the target
TM ~The heart of SLOWI~ RF Carpet Ion Guide nozzle 0.7mm Φ 200 mm φ He 100Torr x 2m ~ 2MeV/u E DC < 10 V/cm (0~10MeV/u) RF gradient Field: 0.7 φ Nozzle ~ - Ion Barrier + 2 Eeff F = − e 1 2 ( r ) 2 ) ∇ E rf - 2 + 1/ τ v 4 m ( Ω Edc + ( E ( r , t ) = E rf ( r )cos( Ω t ), τ v : relax time) - 2 V rf 2 = m µ + max E eff in gas - 3 er 0 + 0.28mm Interval 2 r 0 ≈ electrode distance RF-Carpet co-centric ring frequency is a key issue for low mass ions electrodes M.Wada et al, NIM B204 (2003) 570. 12 A.Takamine et al, R.S.I. 76(2005)103503
RF Carpet Gas Cell -bird’s eye view- high voltage cage <30 keV RI beam ion RF carpet F. Arai et al IJMS 362(2014)56 cryogenic RF Carpet gas cell Fast 2x175W@77K RI Beam pitch: 160 um (80+80) exit orifice: 320 um Φ 2 m
RF transport Fast RI beam 270 structure in the cell top(strip) Entrance(strip) 80max 160 <4ms 1500 1500max <25ms side(strip) Bottom(strip) Axial Curtain(PCB) exit(strip) Exit Curtain(PCB) 100um φ , 100um gap ion surfing mode transport on a rf curtain Axial Curtain S. Masuda 1972, G. Bollen 2011 IJMS 299(2011)131
for Availability
1) Stop & Neutralize in Ar (1 bar) 2) Extract by Gas Flow 3) Re-Ionize at Exit and SPIG PALIS T. Sonoda et al, AIP C.1104(2009)132 PArasitic slow RI-beam with gas catcher Laser Ion Source Target F1 F2 not universal, not very fast but A/Z, Z, A separation
Recommend
More recommend