Torsion subgroups of rational elliptic curves over the compositum of all cubic fields Andrew V. Sutherland Massachusetts Institute of Technology October 2, 2015 joint work with Harris B. Daniels, ´ Alvaro Lozano-Robledo, and Filip Najman http://arxiv.org/abs/1509.00528
Torsion subgroups of elliptic curves over number fields Theorem (Mazur 1977) Let E be an elliptic curve over Q . � Z / M Z 1 � M � 10 , M = 12 ; E ( Q ) tors ≃ Z / 2 Z ⊕ Z / 2 M Z 1 � M � 4 . Theorem (Kenku,Momose 1988, Kamienny 1992) Let E be an elliptic curve over a quadratic number field K . 1 � M � 16 , M = 18 ; Z / M Z Z / 2 Z ⊕ Z / 2 M Z 1 � M � 6 ; E ( K ) tors ≃ Z / 3 Z ⊕ Z / 3 M Z M = 1 , 2 ( K = Q ( ζ 3 ) only ) ; ( K = Q ( i ) only ) . Z / 4 Z ⊕ Z / 4 Z
Torsion subgroups of elliptic curves over cubic fields Theorem (Jeon,Kim,Schweizer 2004) Let T be an abelian group for which E ( F ) tors ≃ T for infinitely many elliptic curves E over cubic number fields F with distinct j ( E ) . � 1 � M � 16 , M = 18 , 20 ; Z / M Z T ≃ Z / 2 Z ⊕ Z / 2 M Z 1 � M � 7 . Theorem (Najman 2012) Let E / Q be an elliptic curve and let K be a cubic number field. � Z / M Z 1 � M � 10 , M = 12 , 13 , 14 , 18 , 21 ; E ( K ) tors ≃ Z / 2 Z ⊕ Z / 2 M Z 1 � M � 4 , M = 7 . The case E ( K ) tors ≃ Z / 21 Z occurs only for 162b1 with K = Q ( ζ 9 ) + .
Elliptic curves over Q ( 2 ∞ ) Definition Let Q ( d ∞ ) be the compositum of all degree- d extensions K / Q in Q . Example: Q ( 2 ∞ ) is the maximal elementary 2-abelian extension of Q . Theorem (Frey,Jarden 1974) For E / Q the group E ( Q ( 2 ∞ )) is not finitely generated.
Elliptic curves over Q ( 2 ∞ ) Definition Let Q ( d ∞ ) be the compositum of all degree- d extensions K / Q in Q . Example: Q ( 2 ∞ ) is the maximal elementary 2-abelian extension of Q . Theorem (Frey,Jarden 1974) For E / Q the group E ( Q ( 2 ∞ )) is not finitely generated. Theorem (Laska,Lorenz 1985, Fujita 2004,2005) For E / Q the group E ( Q ( 2 ∞ )) tors is finite and Z / M Z M = 1 , 3 , 5 , 7 , 9 , 15 ; Z / 2 Z ⊕ Z / 2 M Z 1 � M � 6 , M = 8 ; E ( Q ( 2 ∞ )) tors ≃ Z / 3 Z ⊕ Z / 3 Z Z / 4 Z ⊕ Z / 4 M Z 1 � M � 4 ; Z / 2 M Z ⊕ Z / 2 M Z 3 � M � 4 .
Elliptic curves over Q ( 3 ∞ ) Theorem (Daniels,Lozano-Robledo,Najman,S 2015) For E / Q the group E ( Q ( 3 ∞ )) tors is finite and Z / 2 Z ⊕ Z / 2 M Z M = 1 , 2 , 4 , 5 , 7 , 8 , 13 ; M = 1 , 2 , 4 , 7 ; Z / 4 Z ⊕ Z / 4 M Z E ( Q ( 3 ∞ )) tors ≃ Z / 6 Z ⊕ Z / 6 M Z M = 1 , 2 , 3 , 5 , 7 ; Z / 2 M Z ⊕ Z / 2 M Z M = 4 , 6 , 7 , 9 . Of these, all but 4 arise for infinitely many j ( E ) . We give complete lists/parametrizations of the j ( E ) that arise in each case. E / Q E ( Q ( 3 ∞ )) tors E / Q E ( Q ( 3 ∞ )) tors 11a2 Z / 2 Z ⊕ Z / 2 Z 338a1 Z / 4 Z ⊕ Z / 28 Z 17a3 Z / 2 Z ⊕ Z / 4 Z 20a1 Z / 6 Z ⊕ Z / 6 Z 15a5 Z / 2 Z ⊕ Z / 8 Z 30a1 Z / 6 Z ⊕ Z / 12 Z 11a1 Z / 2 Z ⊕ Z / 10 Z 14a3 Z / 6 Z ⊕ Z / 18 Z Z / 2 Z ⊕ Z / 14 Z Z / 6 Z ⊕ Z / 30 Z 26b1 50a3 Z / 2 Z ⊕ Z / 16 Z Z / 6 Z ⊕ Z / 42 Z 210e1 162b1 Z / 2 Z ⊕ Z / 26 Z Z / 8 Z ⊕ Z / 8 Z 147b1 15a1 Z / 4 Z ⊕ Z / 4 Z Z / 12 Z ⊕ Z / 12 Z 17a1 30a2 Z / 4 Z ⊕ Z / 8 Z Z / 14 Z ⊕ Z / 14 Z 15a2 2450a1 Z / 4 Z ⊕ Z / 16 Z Z / 18 Z ⊕ Z / 18 Z 210e2 14a1
T j ( t ) Z / 2 Z ⊕ Z / 2 Z t ( t 2 + 16 t + 16 ) 3 Z / 2 Z ⊕ Z / 4 Z t ( t + 16 ) ( t 4 − 16 t 2 + 16 ) 3 Z / 2 Z ⊕ Z / 8 Z t 2 ( t 2 − 16 ) ( t 4 − 12 t 3 + 14 t 2 + 12 t + 1 ) 3 Z / 2 Z ⊕ Z / 10 Z t 5 ( t 2 − 11 t − 1 ) ( t 2 + 13 t + 49 )( t 2 + 5 t + 1 ) 3 Z / 2 Z ⊕ Z / 14 Z t ( t 16 − 8 t 14 + 12 t 12 + 8 t 10 − 10 t 8 + 8 t 6 + 12 t 4 − 8 t 2 + 1 ) 3 Z / 2 Z ⊕ Z / 16 Z t 16 ( t 4 − 6 t 2 + 1 )( t 2 + 1 ) 2 ( t 2 − 1 ) 4 ( t 4 − t 3 + 5 t 2 + t + 1 )( t 8 − 5 t 7 + 7 t 6 − 5 t 5 + 5 t 3 + 7 t 2 + 5 t + 1 ) 3 Z / 2 Z ⊕ Z / 26 Z t 13 ( t 2 − 3 t − 1 ) ( t 2 + 192 ) 3 − 16 ( t 4 − 14 t 2 + 1 ) 3 − 4 ( t 2 + 2 t − 2 ) 3 ( t 2 + 10 t − 2 ) Z / 4 Z ⊕ Z / 4 Z ( t 2 − 64 ) 2 , , t 2 ( t 2 + 1 ) 4 t 4 16 ( t 4 + 4 t 3 + 20 t 2 + 32 t + 16 ) 3 − 4 ( t 8 − 60 t 6 + 134 t 4 − 60 t 2 + 1 ) 3 Z / 4 Z ⊕ Z / 8 Z , t 4 ( t + 1 ) 2 ( t + 2 ) 4 t 2 ( t 2 − 1 ) 2 ( t 2 + 1 ) 8 ( t 16 − 8 t 14 + 12 t 12 + 8 t 10 + 230 t 8 + 8 t 6 + 12 t 4 − 8 t 2 + 1 ) 3 Z / 4 Z ⊕ Z / 16 Z t 8 ( t 2 − 1 ) 8 ( t 2 + 1 ) 4 ( t 4 − 6 t 2 + 1 ) 2 � 351 � 4 , − 38575685889 Z / 4 Z ⊕ Z / 28 Z 16384 ( t + 27 )( t + 3 ) 3 Z / 6 Z ⊕ Z / 6 Z t ( t 2 − 3 ) 3 ( t 6 − 9 t 4 + 3 t 2 − 3 ) 3 Z / 6 Z ⊕ Z / 12 Z t 4 ( t 2 − 9 )( t 2 − 1 ) 3 ( t + 3 ) 3 ( t 3 + 9 t 2 + 27 t + 3 ) 3 , ( t + 3 )( t 2 − 3 t + 9 )( t 3 + 3 ) 3 Z / 6 Z ⊕ Z / 18 Z t ( t 2 + 9 t + 27 ) t 3 � − 121945 � , 46969655 Z / 6 Z ⊕ Z / 30 Z 32 32768 � 3375 � , − 140625 , − 1159088625 , − 189613868625 Z / 6 Z ⊕ Z / 42 Z 2 8 2097152 128 ( t 8 + 224 t 4 + 256 ) 3 Z / 8 Z ⊕ Z / 8 Z t 4 ( t 4 − 16 ) 4 � − 35937 ( t 2 + 3 ) 3 ( t 6 − 15 t 4 + 75 t 2 + 3 ) 3 � , 109503 Z / 12 Z ⊕ Z / 12 Z , t 2 ( t 2 − 9 ) 2 ( t 2 − 1 ) 6 4 64 � 2268945 � Z / 14 Z ⊕ Z / 14 Z 128 27 t 3 ( 8 − t 3 ) 3 432 t ( t 2 − 9 )( t 2 + 3 ) 3 ( t 3 − 9 t + 12 ) 3 ( t 3 + 9 t 2 + 27 t + 3 ) 3 ( 5 t 3 − 9 t 2 − 9 t − 3 ) 3 Z / 18 Z ⊕ Z / 18 Z , ( t 3 + 1 ) 3 ( t 3 − 3 t 2 − 9 t + 3 ) 9 ( t 3 + 3 t 2 − 9 t − 3 ) 3
Characterizing Q ( 3 ∞ ) Definition A finite group G is of generalized S 3 -type if it is isomorphic to a subgroup of S 3 × · · · × S 3 . Example: D 6 . Nonexamples: A 4 , C 4 , B ( 2 , 3 ) . Lemma G is of generalized S 3 -type if and only if G is a supersolvable group whose exponent divides 6 and whose Sylow subgroups are abelian. Corollary The class of generalized S 3 -type groups is closed under products, subgroups, and quotients.
Characterizing Q ( 3 ∞ ) Definition A finite group G is of generalized S 3 -type if it is isomorphic to a subgroup of S 3 × · · · × S 3 . Example: D 6 . Nonexamples: A 4 , C 4 , B ( 2 , 3 ) . Lemma G is of generalized S 3 -type if and only if G is a supersolvable group whose exponent divides 6 and whose Sylow subgroups are abelian. Corollary The class of generalized S 3 -type groups is closed under products, subgroups, and quotients. Proposition A number field lies in Q ( 3 ∞ ) if and only if its Galois group is of generalized S 3 -type.
Uniform boundedness for base extensions of E / Q Theorem Let F / Q be a Galois extension with finitely many roots of unity. There is a uniform bound B such that # E ( F ) tors � B for all E / Q .
Uniform boundedness for base extensions of E / Q Theorem Let F / Q be a Galois extension with finitely many roots of unity. There is a uniform bound B such that # E ( F ) tors � B for all E / Q . Proof sketch. 1. E [ n ] �⊆ E ( F ) for all sufficiently large n (Weil pairing). 2. If E [ p k ] ⊆ E ( F ) with k maximal and p j | λ ( E ( F )[ p ∞ ]) , then E admits a Q -rational cyclic p j − k -isogeny (Galois stability). 3. E does not admit a Q -rational cyclic p n -isogeny for p n > 163 (Mazur+Kenku). Corollary E ( Q ( 3 ∞ )) tors is finite. Indeed, # E ( Q ( 3 ∞ )) must divide 2 10 3 7 5 2 7 3 13 .
Determining E ( Q ( 3 ∞ ))[ p ∞ ] for p ∈ { 2 , 3 , 5 , 7 , 13 } Lemma For j ( E ) � = 1728 the structure of E ( Q ( 3 ∞ )) tors is determined by j ( E ) . For j ( E ) = 1728 we have E ( Q ( 3 ∞ )) tors ≃ Z / 2 Z ⊕ Z / 2 Z or Z / 4 Z ⊕ Z / 4 Z . Now we start computing possible Galois images G in GL 2 ( Z / p n Z ) and corresponding modular curves X G , leaning heavily on results of Rouse-Zureick-Brown and S-Zywina. The most annoying case is 27-torsion. We get the genus 4 curve X : x 3 y 2 − x 3 y − y 3 + 6 y 2 − 3 y = 1 . Fortunately Aut ( X Q ( ζ 3 ) ) ≃ Z / 3 Z ⊕ Z / 3 Z , and the two cyclic quotients are hyperelliptic curves over Q ( ζ 3 ) with only 3 Q ( ζ 3 ) -rational points.
Determining E ( Q ( 3 ∞ ))[ p ∞ ] for p ∈ { 2 , 3 , 5 , 7 , 13 } Lemma For j ( E ) � = 1728 the structure of E ( Q ( 3 ∞ )) tors is determined by j ( E ) . For j ( E ) = 1728 we have E ( Q ( 3 ∞ )) tors ≃ Z / 2 Z ⊕ Z / 2 Z or Z / 4 Z ⊕ Z / 4 Z . Now we start computing possible Galois images G in GL 2 ( Z / p n Z ) and corresponding modular curves X G , leaning heavily on results of Rouse-Zureick-Brown and S-Zywina. The most annoying case is 27-torsion. We get the genus 4 curve X : x 3 y 2 − x 3 y − y 3 + 6 y 2 − 3 y = 1 . Fortunately Aut ( X Q ( ζ 3 ) ) ≃ Z / 3 Z ⊕ Z / 3 Z , and the two cyclic quotients are hyperelliptic curves over Q ( ζ 3 ) with only 3 Q ( ζ 3 ) -rational points. We eventually find E ( Q ( 3 ∞ )) tors must be isomorphic to a subgroup of Z / 8 Z ⊕ Z / 16 Z ⊕ Z / 9 Z ⊕ Z / 9 Z ⊕ Z / 5 Z ⊕ Z / 7 Z ⊕ Z / 7 Z ⊕ Z / 13 Z .
An algorithm to compute E ( Q ( 3 ∞ )) tors Naive approach is not practical, need to be clever. ◮ Compute each E ( Q ( 3 ∞ ))[ p ∞ ] separately. ◮ Q ( E [ p n ]) ⊆ Q ( 3 ∞ ) iff Q ( E [ p n ]) is of generalized S 3 -type. ◮ Q ( P ) ⊆ Q ( 3 ∞ ) iff Q ( P ) is of generalized S 3 -type. ◮ Use fields defined by division polynomials (+ quadratic ext). ◮ If the exponent does not divide 6 you can detect this locally. ◮ Use isogeny kernel polynomials to speed things up. ◮ Prove theorems to rule out annoying cases. theorem ⇒ algorithm ⇒ theorem ⇒ algorithm ⇒ theorem ⇒ · · ·
Recommend
More recommend