Algebraic and combinatorial perspectives in mathematical sciences May Angeli Topological recursion from an algebraic perspective Gaëtan Borot HU Berlin Oct. 2, 2020
I. Bottom-up : how 2d topology arises from algebra II. Two examples : 2d TQFT and Virasoro constraints III. Topological expansions in hermitian matrix models IV. Top-down: from geometric to topological recursion
I How 2d topology arises from algebra
<latexit sha1_base64="WZFOmdeD3Sg57YaGmuyh7NaFkvw=">ADKHicZVLbtNAFJ2YVwmvFJZsXLIpIoriKlXbRaRKbFgURBpK8WNTO+qa3Mw5oZh1Qjr/kXJLbwG+xQt/wAv8BMYiEczmbOnHPvHd/rS0pWaDMa3XSCW7fv3L23c7/74OGjx096u0/PtawUhSmVTKpLgjWwQsDUFIbBZakAc8Lgixe/9iCUoXUnw01yUkHF+JYl5QbJyU9vbepkU4CeOcYBXGJVamwCy1q7Sow1fhu/2Dl2mvPxqO1gj/J1FD+qjBWbrb+R1nklYchKEMaz2LRqVJrK9NGdTduNJQYrAVzADceW6zBNLMAHW9iozP05sIcrKgKB16NCNFQj4RCXnWGQ2VjyDOa6YqW1ZtMtdTMqQLXFHNgSTB2HiJkQqQUmVwNCNEUM8gmrHDgaZqklWG5k5LMcmx2yOXUhFXdUCtOqjrn2QN3ek97oq858afJ+cCbRkqm2x/FsIGVi6u3i9GsLc3xwkg1IAovwAyIT/h3GlW29i/objN6i3zA+jGlaUfXOiFrRjXVuYmNosSa+Ml9T/QbZCo471NWC2H7lby6y76xU5WSPckKNxQ06ivytyfjCMxsPD9+P+6XGzLDvoOXqB9lGEjtApeoPO0BR9Bl9Rd/Q9+BL8CP4GdxsQoNOk/MtRD8+gOXlAuA</latexit> <latexit sha1_base64="FbSwyZluNFsdpYaliQbzfOZU6nY=">ADBnicZVLbtNAFJ2YVwmPtrBkE8iGhRXZKFXbRaRKbFi2iKSVYquax01sZR7WzDi0GnmPxBZ+gx1iy2/wFfwCM4mFcDibOXPOvXd8ry+peGlskvzqRXfu3rv/YO9h/9HjJ0/3Dw6fzYyqNYUpVzpK4IN8FLC1JaWw1WlAQvC4ZKs3gb/cg3alEp+sLcV5AIvZbkoKbZeuphdHwyTUbLB4H+StmSIWpxfH/Z+Z0zRWoC0lGNj5mlS2dxhbUvKoelntYEK0xVewhzk0vdQ5I5gArzr1XZxkrtSVrUFSZuBRz/TIOEjVUJgyVymBYMFrltXFV10x31EyhBd8UC+BpsM+g8RMiEKCWZuokJMRzYBPf2FsqJ6w2tLCa7kT2BaYL7CvKJUWnipO9WxMCEo9mfwTCDmVpBw2kLEwbRKcdP9KI4t3Pi4ZrcYZV1pgVdW6ZhovAIbk5Dw7zQYa1wW3tDCsWbHfA+mdVUVBjcIwk6Mb4v5ic3T3LlsTcMP9Pshm+zltixwN0z9rWM2/c2KnG4w2JLjcUtO078rMnszSsejo4vx8OykXZY9AK9Qq9Rio7RGXqHztEUQToM/qCvkafom/R9+jHNjTqtTnPUQfRz8Env+P</latexit> <latexit sha1_base64="WZ2y9oYpfDhP2ZX9FjoGE0uxb2M=">ADP3icZVJNj9MwEHXD1K+unDkEuhlkaKqWXW13UOlbhw4LAg2q7UhMp2pm1Uf0S2U3Zl5a/wX5C4wp1fwA24csNuI0TKHOKX92YmechBcu16fe/tYIbN2/dvnNwt3v/oOHjzqHjydalorCmEom1SXBGlguYGxyw+CyUIA5YTAl65den25A6VyKd+a6gJTjpcgXOcXGUfPOcPb6aPIi8o80THRJNJgwWRGswoRjs6KY2Wk1n7yvOZpJE/rseafb7/W3Ef4P4hp0UR0X8PWzySTtOQgDGVY61ncL0xqsTI5ZVC1k1JDgekaL2EGYumGX6WYAKsqZVmMUxtLorSgKBV6KdKBDwgUrOschsongGC1wyU9miaJZb6qzLQTXJFbANmCpsfIiQEZFSZPIqIkQ7JyAbucFOIk3VKCsN9e6k1tuE2QK7jkIq7qAUptEdc+2TInd6TXugrznxp1nxyItGSqabP8WwgSuXV+03o1mTWuC1kSoiCq/BRMQX/OtGlV2e5mK26zaE9+CrlVZeONCT+zluLEy59gsTq1NtRfoFsUSXPdm2B2W7s3hpi1d6uyNk2wh04HdTgLP67IpPjXjzonbwZdM+H9bIcoKfoOTpCMTpF5+gVukBjRNFH9Bl9QV+DT8H34Efwa5catOqaJ6gRwe8/owoUfg=</latexit> <latexit sha1_base64="FbSwyZluNFsdpYaliQbzfOZU6nY=">ADBnicZVLbtNAFJ2YVwmPtrBkE8iGhRXZKFXbRaRKbFi2iKSVYquax01sZR7WzDi0GnmPxBZ+gx1iy2/wFfwCM4mFcDibOXPOvXd8ry+peGlskvzqRXfu3rv/YO9h/9HjJ0/3Dw6fzYyqNYUpVzpK4IN8FLC1JaWw1WlAQvC4ZKs3gb/cg3alEp+sLcV5AIvZbkoKbZeuphdHwyTUbLB4H+StmSIWpxfH/Z+Z0zRWoC0lGNj5mlS2dxhbUvKoelntYEK0xVewhzk0vdQ5I5gArzr1XZxkrtSVrUFSZuBRz/TIOEjVUJgyVymBYMFrltXFV10x31EyhBd8UC+BpsM+g8RMiEKCWZuokJMRzYBPf2FsqJ6w2tLCa7kT2BaYL7CvKJUWnipO9WxMCEo9mfwTCDmVpBw2kLEwbRKcdP9KI4t3Pi4ZrcYZV1pgVdW6ZhovAIbk5Dw7zQYa1wW3tDCsWbHfA+mdVUVBjcIwk6Mb4v5ic3T3LlsTcMP9Pshm+zltixwN0z9rWM2/c2KnG4w2JLjcUtO078rMnszSsejo4vx8OykXZY9AK9Qq9Rio7RGXqHztEUQToM/qCvkafom/R9+jHNjTqtTnPUQfRz8Env+P</latexit> <latexit sha1_base64="PzyNsrn+NylCA/1gsMOTHl46SU=">ADLnicZVLjtMwFHXDayivDizZBLqARTRqUEczg1RpJDYsWAyItiM1obKd2yaqH5HtdGZk5RP4FyS28BtILBbdvwCdhshUs7Gx/fce5N7fEnJCm0Gg+d4Nr1Gzdv7d3u3rl7/6D3v7DiZaVojCmkl1TrAGVgYm8IwOC8VYE4YTMnqldena1C6kOK9uSoh5XgpikVBsXGhe/ZmyR6mUSTMFHFMjdYKXkRJhybnGJmp/V8iHJCVbzXn9wMNg/J/EDemjBmfz/c7vJO04iAMZVjrWTwoTWqxMgVlUHeTSkOJ6QovYQZi6WbNU0swAdbWKrM4Tm0hysqAoHXo0E0UCLigknMsMpsonsECV8zUtizb5ZY6pwpQ7WAObA2mDlsfImREpBSZvIwI0W58yEZusMNIUzXKkO9Jan13mC2wK6jkIo7KoVpdcdc+6TInV7TnugrTvxpch50UjJdPunGDZw6fLq3WY0a4cWeGWkiojCKzAR8QX/upFltd28oOI2q3fEd6AbVZbeuNAHdnLcWJlzbBan1iZr6h/Q7ZGokyfbtsBsP3a3lh3NytyskG4JUfDhpzEf1dk8uIgHh4cvh32T4+bZdlDj9FT9BzF6AidotfoDI0R/RZ/QFfQ0+Bd+CH8HPbWrQaWoeoRaCX38AS14PVw=</latexit> <latexit sha1_base64="w3Uemqbpido47t/sJ7bweOXUwRg=">AD3icZVLbtNAFJ24PEp4tWXJpANCyuyUaq2i0iVumFZEGkrYquax01sZR7WzDi0GvkjkNjCb7BDbPkEvoJfYCaxEA53M2fOufa98wlFS+NTZJfvWjnzt1793cf9B8+evzk6d7+wYVRtaYwpYorfUWwAV5KmNrScriqNGBOFyS5VnQL1egTanke3tbQS7wQpbzkmLrqQ+ZwLYgxJ013vDZJSsY/A/SFswRG2cX+/3fmdM0VqAtJRjY2ZpUtncYW1LyqHpZ7WBCtMlXsAM5MIPU+SOYAK8q9V2fpy7Ula1BUmbgY9+pkHCR6qEwJK5TAsGc1xz27iq6pY76q0oQXfJAvgKbDPofIiQCVFKMnUTE2Io5sAmfrD2FA9YbWlhedyFyzBfI59R6m08FBJ2+mOhQlJsT+DZgIwt4KE0xYiDqJVipvuT3Fs4cbnNdvNKOtSc7y0SsdE4yXYmISCf91grHrh9PCsWZLfAemVUVjBsEYivHj8W8Y7M0dy5b0fCAflFk73YtAXuhqm/dcSmv16Rk3UMNuBo3IKT9O+KXLwepePR4dvx8PS4XZd9By9RK9Qio7QKXqDztEUSTRZ/QFfY0+Rd+i79GPTWrUa2ueoU5EP/8AIE0Dpw=</latexit> <latexit sha1_base64="ErR07i395VxprTzHaYKGyezpdTA=">ADE3icZVLbtNAFJ2YVwmvtizZGLJhYUVxlartIlKlblgWRNpKsanmcRNbmYc1Mw6tRv4MJLbwG+wQWz6Ar+AXmEkshMPZzJlz7r3je31JxUtjR6NfvejO3Xv3H+w87D96/OTps929/Qujak1hShVX+opgA7yUMLWl5XBVacCcLgky7PgX65Am1LJ9/a2glzghSznJcXWSx8yBos4KwjW8SQ+uN4djIajNeL/SdqSAWpxfr3X+50xRWsB0lKOjZmlo8rmDmtbUg5NP6sNVJgu8QJmIBe+oSJ3BPgXa+28+PclbKqLUjaxB79TIOEj1QJgSVzmRYM5rjmtnFV1U131I+jBN0VC+ArsE3ceYiQCVFKMnWTEGIo5sAmvrHDxFA9YbWlhdyJ7AtMJ9jX1EqLTxV0naqY2FCUOLP4JlAzK0g4bSFSIJpleKm+1EcW7jxc12Mcq60hwvrdIJ0XgJNiEh4d9pMNa4LyhWPNlvkOTOuqKgwuDsJWjG+L+YnN0ty5bEXD/TLIpvs5aYscDdI/a1jNv31ipysEW/I0bglJ+nfFbk4GKbj4eHb8eD0uF2WHfQCvUKvUYqO0Cl6g87RFGk0Wf0BX2NPkXfou/Rj01o1GtznqMOop9/AJZIB4=</latexit> <latexit sha1_base64="e+EWs9nT3ZRsQl/w8J0EyHutg5o=">ADLXicZVLihNBFK20rzG+Mrp0xoQF01IS4aZWQG3LgcxcwMpJtQj5ukST2aquqYoeg/8F8Et/obLgRx69JfsCpxI5nU6fOufdW39uXlLwdj83olu3Lx1+87B3e69+w8ePuodPr4wqtIUJlRxpa8INsALCRNbWA5XpQYsCIdLsnod/Ms1aFMo+d5el5ALvJDFvKDYemnWe5ExWMSbWRGP4y3NlgTrMTaFpg7b9TeSWe9/nAw3CL+n6QN6aMG57PDzu+MKVoJkJZybMw0HZY2d6Eu5VB3s8pAiekKL2AKcuFbXeaOYAK87V2fpK7QpaVBUnr2KObaZDwgSohsGQu04LBHFfc1q4s2+mO+kEVoNviEvgabB23HiJkTJSTG0SQgzFHNjYN3aUGKrHrLJ06bXcCWyXmM+xryiVFp4qaVvVsTAhKPFn8Ewg5lqQcNqlSIJpleKm/VEcW9j4uHq/GVtaY5XVumEaLwCm5CQ8O80GKtdFt7QwrF6z3wHpnFVGQYXB2EvxrfF/MSmae5ctqbhB/o1knX2bFcWuOun/tYy6+52RU63iHfkeNSQ0/Tvily8GqSjwdHbUf/spFmWA/QUPUcvUYqO0Rl6g87RBFH0EX1GX9DX6FP0LfoR/dyFRp0m5wlqIfr1BxR2Dig=</latexit> <latexit sha1_base64="l3ZIqJTLC/b9WwfHBUogwk5Ch+k=">ADFnicZVLbhMxFHWGVwmPprBkM5BNkUZRBqVqu4hUiQ3sCiJtpcwosj03jRU/RrYnpLmP5DYwm+wQ2zZ8hX8AnYyQkw4Gx+fc+/13DuXlJwZOxz+6kS3bt+5e2/vfvfBw0eP93sHTy6MqjSFCVc6SuCDXAmYWKZ5XBVasCcLgky9fBv1yBNkzJD/amhFzga8nmjGLrpVlv/3A9Yy9njsUZk/HbetbrDwfDeL/SdqQPmpwPjvo/M4KRSsB0lKOjZmw9LmDmvLKIe6m1UGSkyX+BqmIK9T4vcEUyAt73Kzk9yx2RZWZC0j26mQYJH6kSAsvCZVoUMcVt7Ury3a6o34iDHRbXABfga3j1kOEjIlSslDrhBDMYdi7Bs7SgzV46KydOG13AlsF5jPsa8olRaeKmlb1bEwISjxZ/BMIOZGkHDahUiCaZXipv1RHFtY+7h6txgt2tIcL63SCdF4CTYhIeHfaRF7bLwhauqHfM92AaV5VhcHEQdmJ8W4Wf2DTNnctWNPxAvy+yzp5vywJ3/dTfWmbd3azI6QbxlhyPGnKa/l2Ri1eDdDQ4ejfqn50y7KHnqEX6BCl6BidoTfoHE0QRX6jL6gr9Gn6Fv0PfqxDY06Tc5T1EL08w9BYAUS</latexit> <latexit sha1_base64="q2tPvogedE495BoeKcnFDCZJW9g=">ADYHicZVJNb9MwGPZWPkr52AY3uAR64RBVDeq07VBp0i5wG4h1Q3WIbOdta9WxI9spm6z8Nn4HVySu7C9gZxEi5b34yfO8H/Hjl5aCGzse/9jZ7d27/+Bh/9Hg8ZOnz/b2D57PjKo0gwumhNJXlBgQXMKF5VbAVamBFTAJV2fBf1yA9pwJT/bmxLSgiwlX3BGrKey/S+4IHbFiHCXdTb7ileU6GgaNSyl7qyeN1SKBZFLAdF1xuOGwSXRlhOROU/VEY5xzCPMZfQB6yY12x+OR+Mmov9B0oIhauM8O9i5xbliVQHSMkGMmSfj0qYuzGEC6gGuDJSErckS5uBHcLNKHSURFer7OI4dVyWlQXJ6sjHAGuQ8I2poiAyd1gXOSxIJWztyrJb7pj3loPukisQG7B1BlE6ZQqJXN1HVNqvImQT/3FDmPD9DSvLAvGpi54ScSC+I5S6cJDJW2nOylMSIr9GTQTgLkpaDjtqoiDaJUSpvtTgli49n1djOWd6kFWVulY6rJGmxMQ8G/buR57ZoX14XL6y3xE5hWVWUwLgrEVo6/Vu4dmyepc3jDwgP6zZM1fn3XFoQbJv6rI9aDZkVOmojuwNGkBSfJ3xWZvRslk9Hhx8nw9Lhdlj56hd6gtyhBR+gUvUfn6AIx9B39Qr/R7e7PXr+31zu4S93daWteoE70Xv4BkvwgDw=</latexit> I. How 2d topology arises from algebra — Airy structures Let be a vector space over V C Choose a basis of linear coordinates ( x i ) i ∈ I The Weyl algebra is the graded algebra of differential operators on V W ~ deg x i = deg ~ ∂ x i = 1 deg ~ = 2 V = C [ ~ ] h x i , ~ ∂ x i i 2 I i An Airy structure is a linear map such that L : V → W ~ V deg 1 condition : L i = ~ ∂ x i + O (2) ideal condition : [ L ( V ) , L ( V )] ⊂ ~ W ~ V · L ( V )
Recommend
More recommend