tomography by neutrino pair beam
play

Tomography by neutrino pair beam Hisashi Okui, Takehiko Asaka, - PowerPoint PPT Presentation

24th International Summer Institute SI2018 on Phenomenology of Elementary Particle Physics and Cosmology 17 August, Friday Tomography by neutrino pair beam Hisashi Okui, Takehiko Asaka, Minoru Tanaka A , Motohiko Yoshimura B Niigata Univ, A


  1. 24th International Summer Institute SI2018 on Phenomenology of Elementary Particle Physics and Cosmology 17 August, Friday Tomography by neutrino pair beam Hisashi Okui, 
 Takehiko Asaka, Minoru Tanaka A , Motohiko Yoshimura B Niigata Univ, A Osaka Univ, B Okayama Univ arXiv:1805.10793[hep-ph] 12-17 August @Tianjin

  2. Introduction

  3. SI2018 Development of the neutrino physics Our understanding of neutrino has been improved greatly since the end of the last century. Especially, the observation of flavor oscillations of neutrino has shown the presence of new physics beyond the standard model. The Nobel Prize in Physics 2015 Takaaki Kajita (SK) Arthur B. McDonald (SNO) Takaaki Kajita For the discovery of neutrino oscillation, which shows the neutrinos have mass. It’s me ! This is inconsistent with the prediction of the Standard Model that predicts massless neutrinos. This is a clear signature of new physics beyond the Standard Model. � 3

  4. SI2018 Neutrino Oscillation Parameter   1 0 0 From neutrino oscillation experiments e i α s ij = sin θ ij , c ij = cos θ ij P = 0 0   e i β 0 0 Majorana phase CP phase PMNS matrix    s 13 e − i δ    c 13 c 12 s 12 1 0 0 0 0  P U P MNS = 0 c 23 s 23 0 1 0 − s 12 c 12 0      − s 13 e − i δ 0 − s 23 c 23 0 c 13 0 0 1 Atmospheric neutrino Solar neutrino Reactor neutrino Accelerator neutrino NuFIT 3.0 (2016) Inverted Ordering ( ∆ χ 2 = 0 . 83) Normal Ordering (best fit) Any Ordering bfp ± 1 σ 3 σ range bfp ± 1 σ 3 σ range 3 σ range sin 2 θ 12 0 . 306 +0 . 012 0 . 306 +0 . 012 0 . 271 → 0 . 345 0 . 271 → 0 . 345 0 . 271 → 0 . 345 � 0 . 012 � 0 . 012 33 . 56 +0 . 77 33 . 56 +0 . 77 θ 12 / � 31 . 38 → 35 . 99 31 . 38 → 35 . 99 31 . 38 → 35 . 99 � 0 . 75 � 0 . 75 Normal Ordering sin 2 θ 23 0 . 441 +0 . 027 0 . 587 +0 . 020 0 . 385 → 0 . 635 0 . 393 → 0 . 640 0 . 385 → 0 . 638 � 0 . 021 � 0 . 024 m 1 < m 2 < m 3 41 . 6 +1 . 5 50 . 0 +1 . 1 θ 23 / � 38 . 4 → 52 . 8 38 . 8 → 53 . 1 38 . 4 → 53 . 0 � 1 . 2 � 1 . 4 sin 2 θ 13 0 . 02166 +0 . 00075 0 . 02179 +0 . 00076 0 . 01934 → 0 . 02392 0 . 01953 → 0 . 02408 0 . 01934 → 0 . 02397 � 0 . 00075 � 0 . 00076 8 . 46 +0 . 15 8 . 49 +0 . 15 Inverted Ordering θ 13 / � 7 . 99 → 8 . 90 8 . 03 → 8 . 93 7 . 99 → 8 . 91 � 0 . 15 � 0 . 15 261 +51 277 +40 δ CP / � 0 → 360 145 → 391 0 → 360 � 59 � 46 m 3 < m 2 < m 1 ∆ m 2 21 7 . 50 +0 . 19 7 . 50 +0 . 19 7 . 03 → 8 . 09 7 . 03 → 8 . 09 7 . 03 → 8 . 09 10 � 5 eV 2 � 0 . 17 � 0 . 17 ∆ m 2  � +2 . 407 → +2 . 643 3 ` +2 . 524 +0 . 039 − 2 . 514 +0 . 038 +2 . 407 → +2 . 643 − 2 . 635 → − 2 . 399 10 � 3 eV 2 � 0 . 040 � 0 . 041 − 2 . 629 → − 2 . 405 has been measured accurately. θ ij ∆ m ij Thanks to the remarkable efforts of various experiments So, we consider seriously the application of neutrino physics to various fields of basic science. * Absolute value of neutrino mass, CP phase, Majorana phase, mass ordering � 4 � 4 have not yet determined.

  5. ν ν SI2018 The idea of Neutrino Tomography Imaging of the Earth’s interior structure using the neutrino. Detector Source Neutrino can easily transmit the Earth due to the weakness of its interaction. � 5

  6. SI2018 Neutrino Tomography 3 different methods of Neutrino Tomography 1. Neutrino Absorption Tomography - Using the absorption of neutrino by matter. - Same mechanism to the X-ray computed tomography. - This method needs the high energy neutrinos (E ν > 10 TeV). • L. V. Volkova and G. T. Zatsepin, Bull. Acad. Sci. USSR, Phys. Ser. 38 (1974) 151. And more … 2. Neutrino Oscillation Tomography - Using the matter effect of neutrino oscillation. • T. Ohlsson andW.Winter, Europhys. Lett. 60 (2002) 34 • E. K. Akhmedov, M. A. Tortola and J.W. F. Valle, JHEP 0506, 053 (2005) • W.Winter, Nucl. Phys. B 908 (2016) 250 • A.N. Ioannisian and A. Y. Smirnov, Phys. Rev. D 96 (2017) no.8, 083009 And more … In this talk, we discuss about this type ! (3. Neutrino Diffraction Tomography) There is no precise tomography method. - Measure the diffraction pattern of crystalline 
 There is no powerful source. matter in the deep interior of the Earth. There is no established reconstruction method. - Not realistic yet. • A.D. Fortes, I. G.Wood, and L. Oberauer, Astron. 
 Geophys. 47(2006) 5.31–5.33. • R. Lauter, Astron. Nachr. 338 (2017) no.1, 111. � 6

  7. ~1000km <latexit sha1_base64="/85t1kYzah0juJaltvxqVGnLTY=">ACa3ichVE9S8NQFD2NX7V+tNpF1KFYKk7lRgTFqeDiolRra0GlJPGpwTQJSVqoX/A0cWhLgoi4s9w8Q84+BNEnBRcHLxNA6Ki3vDyzjvnvOu0+1Dd31iB4iUld3T29ftD82MDg0HE+MjJZcq+ZoqhZhuWUVcUVhm6Koqd7hijbjlCqiE21cOl9v5mXTiubpkbXsMWO1Vl39T3dE3xmCoXK35+ZbXQrCTSlKUgUj+BHI0wshbiStsYxcWNRQhYAJj7EBS5/W5BsJnbgc+cw0gP9gWaiLG2xlmCMxRmD/m/z6utkDV53a7pBmqNTzF4OKxMIUP3dE0vdEc39Ejv9bygxptLw2e1Y5W2JX48Vjh7V9VlWcPB5+qPz172MNC4FVn73bAtG+hdfT1o9OXwuJ6xp+mC3pi/+f0QLd8A7P+ql2uifUWYvwA8vd2/wSl2axMWXltLp2bC58iglMYb7PY8clpFHMejzCVo4izxLSWlcmuykSpFQk8SXkDIf5kSMog=</latexit> <latexit sha1_base64="/85t1kYzah0juJaltvxqVGnLTY=">ACa3ichVE9S8NQFD2NX7V+tNpF1KFYKk7lRgTFqeDiolRra0GlJPGpwTQJSVqoX/A0cWhLgoi4s9w8Q84+BNEnBRcHLxNA6Ki3vDyzjvnvOu0+1Dd31iB4iUld3T29ftD82MDg0HE+MjJZcq+ZoqhZhuWUVcUVhm6Koqd7hijbjlCqiE21cOl9v5mXTiubpkbXsMWO1Vl39T3dE3xmCoXK35+ZbXQrCTSlKUgUj+BHI0wshbiStsYxcWNRQhYAJj7EBS5/W5BsJnbgc+cw0gP9gWaiLG2xlmCMxRmD/m/z6utkDV53a7pBmqNTzF4OKxMIUP3dE0vdEc39Ejv9bygxptLw2e1Y5W2JX48Vjh7V9VlWcPB5+qPz172MNC4FVn73bAtG+hdfT1o9OXwuJ6xp+mC3pi/+f0QLd8A7P+ql2uifUWYvwA8vd2/wSl2axMWXltLp2bC58iglMYb7PY8clpFHMejzCVo4izxLSWlcmuykSpFQk8SXkDIf5kSMog=</latexit> <latexit sha1_base64="/85t1kYzah0juJaltvxqVGnLTY=">ACa3ichVE9S8NQFD2NX7V+tNpF1KFYKk7lRgTFqeDiolRra0GlJPGpwTQJSVqoX/A0cWhLgoi4s9w8Q84+BNEnBRcHLxNA6Ki3vDyzjvnvOu0+1Dd31iB4iUld3T29ftD82MDg0HE+MjJZcq+ZoqhZhuWUVcUVhm6Koqd7hijbjlCqiE21cOl9v5mXTiubpkbXsMWO1Vl39T3dE3xmCoXK35+ZbXQrCTSlKUgUj+BHI0wshbiStsYxcWNRQhYAJj7EBS5/W5BsJnbgc+cw0gP9gWaiLG2xlmCMxRmD/m/z6utkDV53a7pBmqNTzF4OKxMIUP3dE0vdEc39Ejv9bygxptLw2e1Y5W2JX48Vjh7V9VlWcPB5+qPz172MNC4FVn73bAtG+hdfT1o9OXwuJ6xp+mC3pi/+f0QLd8A7P+ql2uifUWYvwA8vd2/wSl2axMWXltLp2bC58iglMYb7PY8clpFHMejzCVo4izxLSWlcmuykSpFQk8SXkDIf5kSMog=</latexit> <latexit sha1_base64="/85t1kYzah0juJaltvxqVGnLTY=">ACa3ichVE9S8NQFD2NX7V+tNpF1KFYKk7lRgTFqeDiolRra0GlJPGpwTQJSVqoX/A0cWhLgoi4s9w8Q84+BNEnBRcHLxNA6Ki3vDyzjvnvOu0+1Dd31iB4iUld3T29ftD82MDg0HE+MjJZcq+ZoqhZhuWUVcUVhm6Koqd7hijbjlCqiE21cOl9v5mXTiubpkbXsMWO1Vl39T3dE3xmCoXK35+ZbXQrCTSlKUgUj+BHI0wshbiStsYxcWNRQhYAJj7EBS5/W5BsJnbgc+cw0gP9gWaiLG2xlmCMxRmD/m/z6utkDV53a7pBmqNTzF4OKxMIUP3dE0vdEc39Ejv9bygxptLw2e1Y5W2JX48Vjh7V9VlWcPB5+qPz172MNC4FVn73bAtG+hdfT1o9OXwuJ6xp+mC3pi/+f0QLd8A7P+ql2uifUWYvwA8vd2/wSl2axMWXltLp2bC58iglMYb7PY8clpFHMejzCVo4izxLSWlcmuykSpFQk8SXkDIf5kSMog=</latexit> SI2018 Neutrino Oscillation Neutrino oscillation is phenomenon that the neutrino flavor will vary with distance. It is caused by the quantum mechanical superposition. Neutrino flavor eigenstates is written by superposition of the mass eigenstates.     ν e ν 1  = U P MNS ν µ ν 2    U P MNS ν τ ν 3 Pontecorvo-Maki-Nakagawa-Sakata flavor eigenstate Mass eigenstate matrix Mass eigenstates evolve respectively in time. Then, because of the interference between the mass state, the flavor transition probability behaves oscillatory. P ( ν e ! ν µ ; E, t ) = | h ν µ | ν e ( t ) i | 2 = | sin θ cos θ (1 � e − i ( E 2 − E 1 ) t ) | 2 Ex) 2 flavor case 1.0 = sin 2 (2 θ ) sin 2 ( ∆ m 2 4 E t ) 0.8 0.6 E = 1 [ GeV ] 0.4 ∆ m 2 = 2 . 524 × 10 − 3 [ eV ] θ = 41 . 6 0.2 180 π x [ km ] � 7 500 1000 1500 2000 2500 3000

Recommend


More recommend