timed automata decidability issues
play

Timed automata Decidability issues Patricia Bouyer-Decitre LSV, - PowerPoint PPT Presentation

Timed automata Decidability issues Patricia Bouyer-Decitre LSV, CNRS & ENS Cachan, France 1/22 An example of a timed automaton done , 22 y 25 repairing repair , x 15 0 = : y repair problem , x :=0 safe alarm 2 y


  1. Timed automata – Decidability issues Patricia Bouyer-Decitre LSV, CNRS & ENS Cachan, France 1/22

  2. An example of a timed automaton done , 22 ≤ y ≤ 25 repairing repair , x ≤ 15 0 = : y repair problem , x :=0 safe alarm 2 ≤ y ∧ x ≤ 56 15 ≤ x ≤ 16 y :=0 delayed , y :=0 failsafe 2/22

  3. An example of a timed automaton done , 22 ≤ y ≤ 25 repairing repair , x ≤ 15 0 = : y repair problem , x :=0 safe alarm 2 ≤ y ∧ x ≤ 56 15 ≤ x ≤ 16 y :=0 delayed , y :=0 failsafe safe x 0 y 0 2/22

  4. An example of a timed automaton done , 22 ≤ y ≤ 25 repairing repair , x ≤ 15 0 = : y repair problem , x :=0 safe alarm 2 ≤ y ∧ x ≤ 56 15 ≤ x ≤ 16 y :=0 delayed , y :=0 failsafe 23 − → safe safe x 0 23 y 0 23 2/22

  5. An example of a timed automaton done , 22 ≤ y ≤ 25 repairing repair , x ≤ 15 0 = : y repair problem , x :=0 safe alarm 2 ≤ y ∧ x ≤ 56 15 ≤ x ≤ 16 y :=0 delayed , y :=0 failsafe 23 problem − → − − − − − → safe safe alarm x 0 23 0 y 0 23 23 2/22

  6. An example of a timed automaton done , 22 ≤ y ≤ 25 repairing repair , x ≤ 15 0 = : y repair problem , x :=0 safe alarm 2 ≤ y ∧ x ≤ 56 15 ≤ x ≤ 16 y :=0 delayed , y :=0 failsafe 23 problem 15 . 6 − → − − − − − → − − → safe safe alarm alarm x 0 23 0 15 . 6 y 0 23 23 38 . 6 2/22

  7. An example of a timed automaton done , 22 ≤ y ≤ 25 repairing repair , x ≤ 15 0 = : y repair problem , x :=0 safe alarm 2 ≤ y ∧ x ≤ 56 15 ≤ x ≤ 16 y :=0 delayed , y :=0 failsafe 23 problem 15 . 6 delayed − → − − − − − → − − → − − − − − → safe safe alarm alarm failsafe x 0 23 0 15 . 6 15 . 6 ⋅⋅⋅ y 0 23 23 38 . 6 0 failsafe ⋅⋅⋅ 15 . 6 0 2/22

  8. An example of a timed automaton done , 22 ≤ y ≤ 25 repairing repair , x ≤ 15 0 = : y repair problem , x :=0 safe alarm 2 ≤ y ∧ x ≤ 56 15 ≤ x ≤ 16 y :=0 delayed , y :=0 failsafe 23 problem 15 . 6 delayed − → − − − − − → − − → − − − − − → safe safe alarm alarm failsafe x 0 23 0 15 . 6 15 . 6 ⋅⋅⋅ y 0 23 23 38 . 6 0 2 . 3 − − → failsafe failsafe ⋅⋅⋅ 15 . 6 17 . 9 0 2 . 3 2/22

  9. An example of a timed automaton done , 22 ≤ y ≤ 25 repairing repair , x ≤ 15 0 = : y repair problem , x :=0 safe alarm 2 ≤ y ∧ x ≤ 56 15 ≤ x ≤ 16 y :=0 delayed , y :=0 failsafe 23 problem 15 . 6 delayed − → − − − − − → − − → − − − − − → safe safe alarm alarm failsafe x 0 23 0 15 . 6 15 . 6 ⋅⋅⋅ y 0 23 23 38 . 6 0 2 . 3 repair − − → − − − − → failsafe failsafe repairing ⋅⋅⋅ 15 . 6 17 . 9 17 . 9 0 2 . 3 0 2/22

  10. An example of a timed automaton done , 22 ≤ y ≤ 25 repairing repair , x ≤ 15 0 = : y repair problem , x :=0 safe alarm 2 ≤ y ∧ x ≤ 56 15 ≤ x ≤ 16 y :=0 delayed , y :=0 failsafe 23 problem 15 . 6 delayed − → − − − − − → − − → − − − − − → safe safe alarm alarm failsafe x 0 23 0 15 . 6 15 . 6 ⋅⋅⋅ y 0 23 23 38 . 6 0 2 . 3 22 . 1 repair − − → − − − − → − − → failsafe failsafe repairing repairing ⋅⋅⋅ 15 . 6 17 . 9 17 . 9 40 0 2 . 3 0 22 . 1 2/22

  11. An example of a timed automaton done , 22 ≤ y ≤ 25 repairing repair , x ≤ 15 0 = : y repair problem , x :=0 safe alarm 2 ≤ y ∧ x ≤ 56 15 ≤ x ≤ 16 y :=0 delayed , y :=0 failsafe 23 problem 15 . 6 delayed − → − − − − − → − − → − − − − − → safe safe alarm alarm failsafe x 0 23 0 15 . 6 15 . 6 ⋅⋅⋅ y 0 23 23 38 . 6 0 2 . 3 22 . 1 repair done − − → − − − − → − − → − − − → failsafe failsafe repairing repairing safe ⋅⋅⋅ 15 . 6 17 . 9 17 . 9 40 40 0 2 . 3 0 22 . 1 22 . 1 2/22

  12. An example of a timed automaton done , 22 ≤ y ≤ 25 repairing repair , x ≤ 15 0 = : y repair problem , x :=0 safe alarm 2 ≤ y ∧ x ≤ 56 15 ≤ x ≤ 16 y :=0 delayed , y :=0 failsafe 23 problem 15 . 6 delayed − → − − − − − → − − → − − − − − → safe safe alarm alarm failsafe x 0 23 0 15 . 6 15 . 6 ⋅⋅⋅ y 0 23 23 38 . 6 0 2 . 3 22 . 1 repair done − − → − − − − → − − → − − − → failsafe failsafe repairing repairing safe ⋅⋅⋅ 15 . 6 17 . 9 17 . 9 40 40 0 2 . 3 0 22 . 1 22 . 1 This run reads the timed word ( problem , 23)( delayed , 38 . 6)( repair , 40 . 9) , ( done , 63). 2/22

  13. Decidability of basic properties Outline 1. Decidability of basic properties 2. Equivalence (or preorder) checking 3. Some extensions of timed automata 3/22

  14. Decidability of basic properties Verification Emptiness problem Is the language accepted by a timed automaton empty? basic reachability/safety properties (final states) basic liveness properties ( 휔 -regular conditions) 4/22

  15. Decidability of basic properties Verification Emptiness problem Is the language accepted by a timed automaton empty? Problem: the set of configurations is infinite ⇝ classical methods for finite-state systems cannot be applied 4/22

  16. Decidability of basic properties Verification Emptiness problem Is the language accepted by a timed automaton empty? Problem: the set of configurations is infinite ⇝ classical methods for finite-state systems cannot be applied Positive key point: variables (clocks) increase at the same speed 4/22

  17. Decidability of basic properties Verification Emptiness problem Is the language accepted by a timed automaton empty? Problem: the set of configurations is infinite ⇝ classical methods for finite-state systems cannot be applied Positive key point: variables (clocks) increase at the same speed Theorem [AD90,AD94] The emptiness problem for timed automata is decidable and PSPACE-complete. [AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90) . [AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science) . 4/22

  18. Decidability of basic properties Verification Emptiness problem Is the language accepted by a timed automaton empty? Problem: the set of configurations is infinite ⇝ classical methods for finite-state systems cannot be applied Positive key point: variables (clocks) increase at the same speed Theorem [AD90,AD94] The emptiness problem for timed automata is decidable and PSPACE-complete. Method: construct a finite abstraction [AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90) . [AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science) . 4/22

  19. Decidability of basic properties The region abstraction clock y 2 1 0 clock x 0 1 2 5/22

  20. Decidability of basic properties The region abstraction clock y only constraints: x ∼ c with c ∈ { 0 , 1 , 2 } y ∼ c with c ∈ { 0 , 1 , 2 } 2 1 0 clock x 0 1 2 “compatibility” between regions and constraints 5/22

  21. Decidability of basic properties The region abstraction clock y y =1 x =1 The path - can be fired from - cannot be fired from 2 1 0 clock x 0 1 2 “compatibility” between regions and constraints “compatibility” between regions and time elapsing 5/22

  22. Decidability of basic properties The region abstraction clock y y =1 x =1 The path - can be fired from - cannot be fired from 2 1 0 clock x 0 1 2 “compatibility” between regions and constraints “compatibility” between regions and time elapsing 5/22

  23. Decidability of basic properties The region abstraction clock y 2 1 0 clock x 0 1 2 “compatibility” between regions and constraints “compatibility” between regions and time elapsing ⇝ an equivalence of finite index 5/22

  24. Decidability of basic properties The region abstraction clock y 2 1 0 clock x 0 1 2 “compatibility” between regions and constraints “compatibility” between regions and time elapsing ⇝ an equivalence of finite index a time-abstract bisimulation 5/22

  25. Decidability of basic properties Time-abstract bisimulation This is a relation between ∙ and ∙ such that: 6/22

  26. Decidability of basic properties Time-abstract bisimulation This is a relation between ∙ and ∙ such that: a ∀ 6/22

  27. Decidability of basic properties Time-abstract bisimulation This is a relation between ∙ and ∙ such that: a ∀ a ∃ 6/22

  28. Decidability of basic properties Time-abstract bisimulation This is a relation between ∙ and ∙ such that: 훿 ( d ) a ∀ d > 0 ∀ a ∃ 6/22

  29. Decidability of basic properties Time-abstract bisimulation This is a relation between ∙ and ∙ such that: 훿 ( d ) a ∀ d > 0 ∀ 훿 ( d ′ ) a ∃ d ′ > 0 ∃ 6/22

  30. Decidability of basic properties Time-abstract bisimulation This is a relation between ∙ and ∙ such that: 훿 ( d ) a ∀ d > 0 ∀ 훿 ( d ′ ) a ∃ d ′ > 0 ∃ ... and vice-versa (swap ∙ and ∙ ). 6/22

  31. Decidability of basic properties The region abstraction (2) clock y - region R defined by: ✽ 0 < x < 1 ❁ 0 < y < 1 2 y < x ✿ 1 0 clock x 0 1 2 7/22

Recommend


More recommend