tightly secure signatures from chameleon hash functions
play

Tightly-Secure Signatures from Chameleon Hash Functions NIST, - PowerPoint PPT Presentation

Tightly-Secure Signatures from Chameleon Hash Functions NIST, Maryland , PKC 2015 Olivier Blazy 1 , Saqib A. Kakvi 2 , Eike Kiltz 2 , Jiaxin Pan 2 1 University of Limoges, France 2 Ruhr University Bochum, Germany Keywords 1. Signatures 2. Tight


  1. Tightly-Secure Signatures from Chameleon Hash Functions NIST, Maryland , PKC 2015 Olivier Blazy 1 , Saqib A. Kakvi 2 , Eike Kiltz 2 , Jiaxin Pan 2 1 University of Limoges, France 2 Ruhr University Bochum, Germany

  2. Keywords 1. Signatures 2. Tight Security 3. Chameleon Hash Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 2/30

  3. Signature ⊲ ( pk , sk ) ← $ Gen ⊲ σ ← $ Sign ( sk , M ) ⊲ 0 / 1 ← Ver ( pk , M , σ ) Correctness: ∀ ( pk , sk ) ← $ Gen , Ver ( pk , M , Sign ( sk , M )) = 1 Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 3/30

  4. UF-CMA Security Challenger Adversary ( pk , sk ) ← $ Gen pk M i σ i ← $ Sign ( sk , M i ) σ i ( M , σ ) Adversary wins: Ver ( pk , M , σ ) = 1 ∧ M / ∈ { M 1 , . . . , M Q } Q is the number of signing queries. Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 4/30

  5. Provable Security g, A ← $ G Adversary DLOG Reduction a ∈ Z p A = g a Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 5/30

  6. Provable Security g, A ← $ G “ DLOG problem is hard ⇒ scheme is secure” Adversary DLOG Reduction a ∈ Z p A = g a Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 5/30

  7. ◮ Let k be the security parameter, Adv [ Sig ] < f ( k ) · Adv [ DLOG ] Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 6/30

  8. Tight Security Adv [ Sig ] < f ( k ) · Adv [ DLOG ] ◮ “Tight” if f ( k ) = O (1) ◮ “Loose” if f ( k ) = O ( Q ) Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 7/30

  9. Why “tight”? ◮ In practice: ◦ We want efficient schemes! ◦ Smaller security parameters! Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 8/30

  10. For example ◮ We want 80-bit security and Q = 2 40 Tight scheme ⊲ Adv [ Sig ] < Adv [ DLOG ] < 2 − 80 = ⇒ We need DLOG problem with 80-bit security = ⇒ | p | = 160 (by the best DLOG attack) Loose Scheme ⊲ Adv [ Sig ] < 2 40 · Adv [ DLOG ] < 2 − 80 ⇒ Adv [ DLOG ] < 2 − 120 = = ⇒ We need DLOG problem with 120-bit security = ⇒ | p | = 240 (by the best DLOG attack) Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 9/30

  11. Signatures in the Standard Model ◮ Loose Reduction ◦ e.g. Waters ’05 ◮ Non-standard/“ Q -Type” Assumptions ◦ e.g. Boneh-Boyen ’04 ◮ Exceptions: . . . Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 10/30

  12. Tight Signatures from Standard Assumptions ◮ CRYPTO ’96 Cramer-Damgård: RSA ◮ PKC ’05 Catalano-Gennaro: Factoring ◮ CRYPTO ’12 Hofheinz-Jager: DLIN Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 11/30

  13. Tight Signatures from Standard Assumptions ◮ CRYPTO ’96 Cramer-Damgård: RSA ◮ PKC ’05 Catalano-Gennaro: Factoring ◮ CRYPTO ’12 Hofheinz-Jager: DLIN Question Generic constructions for tight signatures? Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 11/30

  14. Our Contribution TSIG[DLOG] DLOG TSIG[SIS] SIS TSIG[CDH] CDH Transformation TSIG[DLIN] DLIN TSIG[RSA] RSA . . . TSIG[. . .] Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 12/30

  15. Our Contribution Two-Tier Signature Tight Signature Chameleon Hash . . . DLOG SIS FAC Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 13/30

  16. Our Contribution [BS07] Two-Tier Signature Tight Signature Chameleon Hash . . . DLOG SIS FAC Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 13/30

  17. Two-Tier Signature ◮ Proposed by Bellare and Shoup at PKC ’07 Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 14/30

  18. Two-Tier Signature Two-Tier Signature Signature ◮ ( ppk , psk ) ← $ PrimaryGen ◮ ( pk , sk ) ← $ Gen ◮ ( spk , ssk ) ← $ SecondaryGen ◮ σ ← $ Sign ( sk , M ) ◮ σ ← $ TTSign ( sk , ssk , M ) ◮ 0 / 1 ← Ver ( pk , M , σ ) ◮ 0 / 1 ← TTVer ( pk , spk , M , σ ) Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 15/30

  19. Security of two-tier signature Challenger Adversary pk ( ppk , psk ) ← $ PrimaryGen M i ( spk i , ssk i ) ← $ SecondaryGen σ i ← $ TTSign ( sk , ssk i , M i ) ( σ i , spk i ) ( M , σ, spk ) Adversary wins: TTVer ( ppk , spk , M , σ ) = 1 ∧ M / ∈ { M 1 , . . . , M Q } ∧ spk = spk i for some i Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 16/30

  20. Two-Tier Signature → Standard Signature . . . . . . . . . . . . . . . . . . . . . . . . Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 17/30

  21. Two-Tier Signature → Standard Signature spk i ← $ SecondaryGen . . . . . . . . . . . . . . . . . . . . . . . . Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 17/30

  22. Two-Tier Signature → Standard Signature spk i ← $ SecondaryGen . . . . . . . . . . . . . . . . . . . . . . . . M Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 17/30

  23. Gen of Tree Signature ◮ ( ppk , psk ) ← $ PrimaryGen Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 18/30

  24. Gen of Tree Signature ◮ ( ppk , psk ) ← $ PrimaryGen ◮ ( spk root , ssk root ) ← $ SecondaryGen . . . . . . . . . . . . Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 18/30

  25. Gen of Tree Signature ◮ ( ppk , psk ) ← $ PrimaryGen ◮ ( spk root , ssk root ) ← $ SecondaryGen ◮ PK = ( ppk , spk root ) , sk = ( psk , ssk root ) Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 18/30

  26. Sign( sk ,M) ◮ Step 1: Nodes Generation ◮ Step 2: Path Authentication Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 19/30

  27. Step 1: Node Generation . . . . . . . . . . . . . . . . . . . . . . . . M Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 20/30

  28. Step 1: Node Generation . . . . . . . . . . . . . . . . . . . . . . . . M Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 20/30

  29. Step 1: Node Generation . . . . . . . . . . . . . . . . . . . . . . . . M Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 20/30

  30. Step 1: Node Generation . . . . . . . . . . . . . . . . . . . . . . . . M Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 20/30

  31. Step 1: Node Generation . . . . . . . . . . . . . . . . . . . . . . . . M Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 20/30

  32. Step 2: Path Authentication . . . . . . . . . . . . . . . . . . . . . . . . M Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 21/30

  33. Step 2: Path Authentication ◮ σ = TTSign ( psk , ssk parent , ( LChild || RChild )) Parent LChild RChild Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 22/30

  34. Step 2: Path Authentication Use Two-Tier Sig to authenticate the path σ 0 . . . . . . . . . . . . . . . . . . . . . . . . M Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 23/30

  35. Step 2: Path Authentication Use Two-Tier Sig to authenticate the path σ 0 σ 1 . . . . . . . . . . . . . . . . . . . . . . . . M Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 23/30

  36. Step 2: Path Authentication Use Two-Tier Sig to authenticate the path σ 0 σ 1 . . . . . . . . . . . . . . . . . . . . . . . . σ L M Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 23/30

  37. Signatures ◮ Define signature := (path, σ 1 , . . . , σ L ) ◮ Verify: ◦ Check if ( σ 1 , . . . , σ L ) are valid two-tier signatures on path Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 24/30

  38. Security Theorem 1 Our construction is tightly secure, if the underlying two-tier signature is tightly-secure. Particularly, ◮ Adv[TreeSig] = Adv[Two-TierSig] Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 25/30

  39. Proof Idea ◮ Simulate the signature without sk : ◦ Use two-tier signing oracle ◮ Tightly extract the two-tier forgery: ◦ Observation: ◮ Forgery path differs from signing paths ◦ “Splitting” node: the valid two-tier forgery Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 26/30

  40. “Splitting” Node . . . . . . . . . . . . . . . . . . . . . . . . . . . M ∗ Tight Sign from CHF |Horst Görtz Institute for IT-Security|NIST, Maryland|PKC 2015 27/30

Recommend


More recommend