thresholds for entanglement criteria in quantum
play

Thresholds for entanglement criteria in quantum information theory - PowerPoint PPT Presentation

Thresholds for entanglement criteria in quantum information theory Joint results with Nicolae Lupa, Ion Nechita and David Reeb Toulouse 2015 Content Entanglement via positive maps approach Reduction Criterion (RED) Absolute Reduction


  1. Thresholds for entanglement criteria in quantum information theory Joint results with Nicolae Lupa, Ion Nechita and David Reeb Toulouse 2015

  2. Content ◮ Entanglement via positive maps approach ◮ Reduction Criterion (RED) ◮ Absolute Reduction Criterion (ARED) ◮ Approximations of (A)SEP ◮ Thresholds for RED and ARED ◮ Comparing entanglement criteria via thresholds

  3. Introduction: Entanglement versus separability Entanglement=inseparability Separable state : ρ = � i , p i ≥ 0 , � p i e i e ∗ i ⊗ f i f ∗ p i = 1 , e i ∈ C n , f i ∈ C k i i Goal : efficient methods to characterize entangled states PPT criterion : 1 if a state is separable, then the partial transpose respect to one of the subsystems is positive-semidef. SEP := { ρ AB : ρ AB − sep } ⊂ PPT = { ρ AB /ρ Γ ≥ 0 } Tool to detect entanglement: if the partial transpose is not positive-semidefinite, then the state is entangled Question : exists other postive maps ϕ such that ( id ⊗ ϕ )( ρ ) � 0, for some ρ entangled state 1 A. Peres, Separability criterion for density matrices, PRL 77,1996

  4. Separability criteria based on positive maps approach Mathematical formulation 2 : ρ ∈ M n ⊗ M k separable iff ρ ϕ := [ id ⊗ ϕ ]( ρ ) ≥ 0 , ∀ ϕ ≥ 0 , ϕ : M k → M m , all positive integers m ∈ N SEP : ⊂ { ρ : ρ ϕ ≥ 0 } ◮ transposition map ϕ ⇒ Positive Partial Transposition (PPT) ◮ reduction map: ϕ ( X ) := I · Tr X − X ⇒ Reduction Criterion (RC) 3 : ρ AB − sep ⇒ ρ A ⊗ I B − ρ AB ≥ 0 , I A ⊗ ρ B − ρ AB ≥ 0 (1) ρ A = [ id ⊗ Tr ]( ρ AB ) partial trace over the second subsystem 2 Horodecki M, Separability of mixed states: necessary and sufficient conditions, Phys. Lett A, 1996 3 Horodecki and all.’99, Cerf and all. ’99

  5. Separability via Reduction Criterion ◮ SEP ⊂ RED := { ρ : ρ red := ρ A ⊗ I B − ρ AB ≥ 0 } ◮ ρ AB rank one entangled state, then ρ red � 0 ◮ ρ Γ ≥ 0 ⇒ ρ red ≥ 0 , ( PPT ⊂ RED ) ◮ If dimB = 2, then PPT=RC ◮ RC connected to entanglement distillation: all states that violate RC are distillable. SEP ⊂ PPT ⊂ RED SEP PPT RLN RED D n,k

  6. Absolutely Separable States Knill’s question 4 : given an self-adjoint positive semi-definite operator ρ , which are the conditions on the spectrum of ρ such that ρ is separable respect to any decomposition? ASEP : states that remain separable under any unitary transformation � U SEP n , k U ∗ ASEP n , k = U ∈U nk Goal = conditions on the spectrum such that to be separable! � APPT n , k := { ρ ∈ D n , k / ∀ U ∈ U nk : ( U ρ U ∗ ) Γ ≥ 0 } = U PPT n , k U ∗ U ∈U nk � ARED n , k := { ρ ∈ D n , k / ∀ U ∈ U nk : ( U ρ U ∗ ) red ≥ 0 } = U RED n , k U ∗ U ∈U nk 4 Open Problems in Quantum Information Theory, http://www. imaph.tu-bs.de/qi/problems

  7. Absolutely PPT states ◮ necessary and sufficient conditions 5 on the spectrum under which the absolute PPT property holds ◮ the condition is to check the positivity of an exponential number of Hermitian matrices (the number of LMI is bounded above by e 2 plnp ( 1 + o ( 1 )) , p = min ( n , k ) ) ◮ if ρ ∈ H 2 n = H 2 ⊗ H n , then ρ ∈ APPT iff � λ 1 ≤ λ 2 n − 1 + 2 λ 2 n λ 2 n − 2 . ◮ if ρ ∈ H 3 n = H 3 ⊗ H n , then ρ ∈ APPT iff   2 λ 3 n λ 3 n − 1 − λ 1 λ 3 n − 2 − λ 2  ≥ 0 , λ 3 n − 1 − λ 1 2 λ 3 n − 3 λ 3 n − 4 − λ 3  λ 3 n − 2 − λ 2 λ 3 n − 4 − λ 3 2 λ 3 n − 5   2 λ 3 n λ 3 n − 1 − λ 1 λ 3 n − 3 − λ 2  ≥ 0 . λ 3 n − 1 − λ 1 2 λ 3 n − 2 λ 3 n − 4 − λ 3 (2)  λ 3 n − 3 − λ 2 λ 3 n − 4 − λ 3 2 λ 3 n − 5 5 Hildebrand, Positive partial transpose from spectra, PRA, 2007

  8. Absolutely Reduced pure states ARED n , k := { ρ ∈ D n , k | ∀ U ∈ U nk : ( U ρ U ∗ ) red ≥ 0 } (3) Reduction of pure state 6 : Given a vector ψ ∈ C n ⊗ C k with Schmidt coefficients { x i } r i = 1 , the eigenvalues of the reduced matrix ( ψψ ∗ ) red are � ( ψψ ∗ ) red � = ( x 1 , . . . , x 1 , η 1 , x 2 , . . . , η r − 1 , x r , . . . , x r , 0 , . . . , 0 , η r ) spec � �� � � �� � � �� � k − 1 times k − 1 times ( n − r ) k times where x i ≥ η i ≥ x i + 1 for i ∈ [ r − 1 ] and η r = − � r − 1 i = 1 η i ≤ 0. The set { η i } r i = 1 \ { x i } r i = 1 is the set of solutions η ∈ R \ { x i } r i = 1 of the equation r x i � x i − η = 1 i = 1 . 6 M.A. Jivulescu, N. Lupa, I. Nechita, D. Reeb, Positive reduction from spectra, Linear Algebra and its Applications, 2014

  9. Characterizing Absolutely Reduced states ARED n , k = { ρ ∈ D n , k : ∀ x ∈ ∆ min ( n , k ) , � λ ↓ x ↑ � ≥ 0 } , ρ , ˆ (4) x ↑ is the where λ ↓ ρ is the vect. of the eigenvalues of ρ and ˆ vector of Schmidt coefficients. ˆ x := ( x 1 , . . . , x 1 , η 1 , x 2 , . . . , x 2 , . . . , η r − 1 , x r , . . . , x r , 0 , . . . , 0 , η r ) , � �� � � �� � � �� � � �� � k − 1 times k − 1 times k − 1 times ( n − r ) k times η i are the solutions of the equation F x ( λ ) := � q m i x i x i − λ − 1 = 0 . i = 1 ◮ necessary and sufficient condition on the spectrum as family of linear inequalities in terms of the spectrum of reduced of a pure state ◮ given ρ ∈ M 2 ( C ) ⊗ M k ( C ) , then ρ ∈ ARED 2 , k if and only if � λ 1 ≤ λ k + 1 + 2 ( λ 2 + · · · + λ k )( λ k + 2 + · · · + λ 2 k ) .

  10. Approximations of SEP � � ρ ∈ D n , k | Tr ( ρ 2 ) ≤ 1 SEPBALL n , k = nk − 1 ◮ largest Euclidian ball 7 inside D n , k , centered at I nk ◮ contains states on the boundary of D n , k ◮ all states within SEPBALL are separable ◮ depends only on the spectrum, i.e. SEPBALL n , k ⊂ ASEP ◮ it is smaller than other sets � � λ ∈ ∆ nk : � r − 1 i = 1 λ ↓ i ≤ 2 λ ↓ nk + � r − 1 i = 1 λ ↓ GER n , k = nk − i ◮ the defining equation 8 represents the sufficient condition provided by Gershgorin’s theorem for all Hildebrand APPT matrix inequalities to be satisfied ◮ lower approximation of APPT, since GER n , k ⊂ APPT n , k ◮ provides easily-checkable sufficient condition to be APPT, much simpler that Hildebrand’s conditions 7 Gurvitz L., PRA 2002 8 M.A. Jivulescu, N. Lupa, I. Nechita, D. Reeb, Positive reduction from spectra, Linear Algebra and its Applications, 2014

  11. Approximations of (A)SEP SEPBALL ASEP GER APPT ARED ∆ n,k LS p := { λ ∈ ∆ nk : λ ↓ 1 ≤ λ ↓ nk − p + 1 + λ ↓ nk − p + 2 + · · · + λ ↓ nk } ◮ LS P -the sets of eigenvalue vectors for which the largest eigenvalue is less or equal than the sum of the p smallest (arbitrary p ∈ [ nk ] ) ◮ For n , k ≥ 3, APPT ⊆ LS 3 ⊆ LS k ⊆ ARED n , k ⊆ LS 2 k − 1 .

  12. Threshold concept Threshold =the value c of the parameter, giving an scaling of the environment, value at which a sharp phase transition of the system occurs! Mathematical characterisation 9 : Consider a random bipartite quantum state ρ AB ∈ M n ( C ) ⊗ M k ( C ) , obtained by partial tracing over C s a uniformly distributed, pure state x ∈ C n ⊗ C k ⊗ C s . When one (or both)of the system dimensions n and k are large, a threshold phenomenon occurs: if s ∼ cnk , then there is a threshold value c 0 such that 1. for all c < c 0 , as dimension nk grows, P ( ρ AB satisfies the entangled criterion) = 0; 2. for all c > c 0 , as dimension nk grows, P ( ρ AB satisfies the entangled criterion) = 1; 9 Aubrun, G. Partial transposition of random states and non-centered semicircular distributions. Random Matrices: Theory Appl. (2012)

  13. Reduction Criterion: RMT approach W = XX ∗ ∈ M d ( C ) -Wishart matrix of parmeters d and s . Wishart matrices – physically reasonable models for random density matrices on a tensor product space. The spectral properties of ρ red → reduced matrix R = W red := W A ⊗ I k − W AB , where W AB is a Wishart matrix of parameters nk and s , W A is its partial trace with respect to the second subsystem B . Issues: ◮ study the distribution of the eigenvalues of the random matrix R = W red ◮ evaluating the probability that R is positive semidefinite

  14. Moment formula for R Theorem The moments of the random matrix R = W red = W A ⊗ I k − W AB ∈ M nk ( C ) are given by 10 � ( − 1 ) | f − 1 ( 2 ) | s # α n #( γ − 1 α ) k 1 f ≡ 1 +#( P − 1 E Tr ( R p ) = α ) , ∀ p ≥ 1 , f α ∈S p , f ∈F p (5) ( # -number of cycles of α , f : { 1 , . . . , p } → { 1 , 2 } ) . Examples: E Tr ( R ) = nk ( k − 1 ) s � R 2 � � ( ks ) 2 n + ksn 2 � + nks 2 + ( nk ) 2 s . E Tr = ( k − 2 ) 10 M.A. Jivulescu, N. Lupa, I. Nechita, On the reduction criterion for random quantum states, Journal of Mathematical Physics, Volume: 55, Issue: 11, 2014

  15. Moment formula The proof is based on ◮ the development of R p using the non-commutative binomial formula R p = � ( − 1 ) | f − 1 ( 2 ) | R f f ∈F p ◮ f : { 1 , . . . , p } → { 1 , 2 } encodes the choice of the term (choose the f ( i ) -th term) in each factor in the product R p = ( W A ⊗ I k − W AB )( W A ⊗ I k − W AB ) · · · ( W A ⊗ I k − W AB ) . ◮ R f denotes the ordered product − − − → � R f = R f ( 1 ) R f ( 2 ) · · · R f ( p ) = R f ( i ) , 1 ≤ i ≤ p for the two possible values of the factors R 1 = W A ⊗ I k , R 2 = W AB . ◮ Wick graphical calculus to compute E Tr R f ;

Recommend


More recommend