thermodynamics of dissipative self assembly
play

Thermodynamics of Dissipative Self-Assembly Ger Koper - PowerPoint PPT Presentation

Thermodynamics of Dissipative Self-Assembly Ger Koper DelftChemTech Co-workers TU Delft / ChemE NTNU Jan van Esch Dick Bedeaux Rienk Eelkema Signe Kjelstrup Job Boekhoven (now at NU) Universitat de Barcelona Wouter Hendriksen


  1. Thermodynamics of Dissipative Self-Assembly Ger Koper DelftChemTech

  2. Co-workers TU Delft / ChemE NTNU Jan van Esch Dick Bedeaux Rienk Eelkema Signe Kjelstrup Job Boekhoven (now at NU) Universitat de Barcelona Wouter Hendriksen Christophe Minkenberg Miguel Rubí Ignacio Pagonabarraga TU/ e Luc Brunsveld Ralph Bosmans 20 August 2012 2

  3. Classical Self Assembly K mic Law of mass action ⎯⎯⎯⎯ → ←⎯⎯⎯ ⎯ 3 x N /x c 2 1 x 1 /x c 0 0 1 2 3 x t /x c 20 August 2012 3

  4. Classical Self Assembly K mic Equilibrium ⎯⎯⎯⎯ → ←⎯⎯⎯ ⎯ 0 -0.4 Δ G/(RT) -0.8 -1.2 -1.6 0 0.2 0.4 0.6 0.8 1 conversion ξ 20 August 2012 4

  5. Classical Self Assembly 3 x N /x c 2 Spontaneous 1 x 1 /x c 0 K mic ⎯⎯⎯⎯ → ←⎯⎯⎯ ⎯ 0 1 2 3 x t /x c 0 Δ < -0.4 G 0 Δ G/(RT) -0.8 -1.2 -1.6 0 1 2 3 x t /x c 20 August 2012 5

  6. 6 → ⎯ ⎯⎯⎯⎯ ←⎯⎯⎯ mic K Controlled Self Assembly ⎯⎯→ ←⎯⎯ K 20 August 2012

  7. 55 7 A 5 A Example 1: micelles 20 August 2012

  8. 8 Example 2: responsive vesicles 77 A 7 A 20 August 2012

  9. 9 Enhanced Control of Self Assembly → ⎯ ⎯⎯⎯⎯ ←⎯⎯⎯ mic K b f k k 20 August 2012

  10. Required work: driving reactions Δ backward-drive G Δ forward-drive G ∑ Δ = Δ G G tot drive Δ forward G Δ mic G f,b Δ backward G 20 August 2012 10

  11. 11 Gelation Hydrolysis Example: gelation n o i t a l y h t e M dibenzoyl-(l)-cystine 20 August 2012

  12. 12 Transient gelation 20 August 2012

  13. 13 backward-drive G Δ Thermodynamic Analysis hydr G Δ gel G Δ meth G Δ forward-drive G 20 August 2012 Δ

  14. Driving Reactions O → MMS - + MeOH + H + • Methylation: DMS + H 2 H + + OH - → • Hydrolysis: H 2 O DMS + OH - → MMS - + MeOH • Net reaction: Δ = − o r G 398.4 kJ/mol Gibbs energy change of reaction 20 August 2012 14

  15. Efficiency of Driving Reactions Δ ≈ o • Methylation reaction G 10 kJ/mol meth Δ = −Δ ≈ − o o • Hydrolysis G G 10 kJ/mol hydr meth ε ≈ 3% Efficiency of free energy transfer 20 August 2012 15

  16. Thermodynamic Analysis • Stationary operation � r = • Methylation/hydrolysis rate: 50 mM/hr Δ = − o r G 398.4 kJ/mol • Gibbs energy change of reaction � = − Δ ≈ ≈ o • Lost work W r G 20 kJ/(L hr) 5.6 W/L lost r W � = ≈ lost S 0.02 J/(K L) • Entropy production T amb 20 August 2012 16

  17. Conclusions • Self-assembling systems • respond faster when driven • are dissipative when driven by irreversible reactions • can be used to store energy ! 20 August 2012 17

Recommend


More recommend