thermal conversion of
play

Thermal Conversion of Fossil and Renewable Feedstocks Steven P. Pyl - PowerPoint PPT Presentation

Thermal Conversion of Fossil and Renewable Feedstocks Steven P. Pyl Advisors prof. dr. Marie-Franoise Reyniers prof. dr. ir. Guy B. Marin Laboratory for Chemical Technology Methusalem Advisory Board, 28/06/2010 The Need for Detail


  1. Thermal Conversion of Fossil and Renewable Feedstocks Steven P. Pyl Advisors prof. dr. Marie-Françoise Reyniers prof. dr. ir. Guy B. Marin Laboratory for Chemical Technology

  2. Methusalem Advisory Board, 28/06/2010 The Need for Detail… Fundamental Process Modeling = Molecule-based Modeling  Accurate experimental data is crucial! Process conditions Complex feedstock Complex product Feedstock Product Fundamental molecular molecular model composition composition Advanced Advanced analytical analytical techniques techniques Physical Microkinetic continuity transport model equations phenomena

  3. Methusalem Advisory Board, 28/06/2010 Outline Feedstock analyses • Kerosene • Renewable Naphtha • Bio-diesel Pilot Plant Experiments • Kerosene steam cracking • Renewable naphtha steam cracking • Bio-diesel pyrolysis

  4. Methusalem Advisory Board, 28/06/2010 GC GC setup Heated Transfer- line TOF-MS GC×GC

  5. Methusalem Advisory Board, 28/06/2010 GC GC setup injector He (1) (7) FID FID TOF-MS Quantitative results BPX-50 (3) TOF-MS Peak identification modulator (2) (6) (4) Initial objective Rtx-1 PONA BPX-50 (3) Maximal agreement between OVEN FID and TOF-MS (5) chromatograms Liquid CO 2 Van Geem, Pyl, et al. J. Chrom. A . 2010

  6. Methusalem Advisory Board, 28/06/2010 Kerosene 4 GC GC-FID KEROSENE Di-aromatics  Identification and Naphtheno- quantification of 300 aromatics components Mono- 4 aromatics Di-naphthenes Di-aromatics naphthenes Naphtheno- C16 aromatics paraffins Mono- C9 0 aromatics 10 30 50 Di-naphthenes Confident peak naphthenes indentification C16  paraffins Accurate quatification GC GC-(TOF-MS) 3D view C9 0 10 30 50

  7. Methusalem Advisory Board, 28/06/2010 Renewable Naphtha Naphthenes Aromatics Hydrodeoxygenation Naphtha Olefins 6.5% 0.8% 0.4% Hydrocracking Kerosene n-Paraffins 4 32.4% butyl- ethyl- propyl- iso-Paraffins benzene benzene benzene 59.9% toluene benzene n-C13 n-C12 n-C11 n-C10 n-C9 n-C8 n-C7 GC×GC-FID analysis n-C6 0 30 40 10 20

  8. Methusalem Advisory Board, 28/06/2010 Bio-diesel Transestrification Glycerol C18:1 FAME C18:1 GC×GC-FID C18:3 C18:2 C24:1 C22:1 C16:0 C20:1 C18:0 O O C16:1 wt% :0 :1 :2 :3 C14 0.48 0.00 0.00 0.00 C14:0 C16 14.01 0.19 0.02 0.04 C18 2.69 57.73 16.49 5.61 C20 0.55 0.98 0.00 0.00 C22 0.27 0.36 0.00 0.00 C24 0.24 0.26 0.00 0.00

  9. Methusalem Advisory Board, 28/06/2010 Outline Feedstock analyses • Kerosene • Renewable Naphtha • Bio-diesel Pilot Plant Experiments • Kerosene steam cracking • Renewable naphtha steam cracking • Bio-diesel pyrolysis

  10. Methusalem Advisory Board, 28/06/2010 Pilot Plant Furnace + Reactor Online Analysis Section

  11. Methusalem Advisory Board, 28/06/2010 Pilot Plant FEED FURNACE & REACTOR ONLINE ANALYSIS P P P P P (4) GC × GC × × × × × × × × (5) DHA oil × × × × × × × × N 2 (6) (9) × × × × × × × × (3) (8) (7) (1) × × × × × × × × (10) condensate × × × × × × × × IR-GA × × × × × × × × (12) (11) (2) (1) cell 1 cell 2 cell 3 cell 4 cell 5 cell 6 cell 7 RGA PGA preheating & mixing reactor zone flare

  12. Methusalem Advisory Board, 28/06/2010 Pilot Plant: On-line Effluent Sampling ONLINE ANALYSIS P (4) Heated transfer lines GC × GC (5) 300°C DHA oil GC  GC N 2 (6) (9) DHA (8) (7) (10) condensate IR-GA (12) (11) RGA PGA flare

  13. Methusalem Advisory Board, 28/06/2010 Pilot Plant: On-line Quantification Approach ONLINE ANALYSIS P Nitrogen = Internal Standard (4) GC × GC Methane = Reference Component (5) DHA oil RGA (TCD) H 2 CO 2 C 2 H 4 C 2 H 6 C 2 H 2 N 2 CH 4 CO N 2 (6) (9) check (8) RGA (FID) CH 4 C 2 C 3 C 4 (7) (10) PGA (TCD) CO 2 C 2 H 4 C 2 H 6 C 2 H 2 N 2 CO CH 4 condensate IR-GA DHA (FID) CH 4 C 2 C 3 C 4 C 5 C 6 ... C 16 (12) (11) GC × GC (FID) CH 4 ... C 25 RGA PGA flare DHA and GC×GC temperature program: -40°C  300°C

  14. Methusalem Advisory Board, 28/06/2010 Kerosene Steam Cracking GC  GC chromatogram  two parts 5 not ethene modulated modulated methyl- naphthalenes 2nd dimension retention time (s) methane signal intensity (mV) naphthalene styrene propene indene 2 benzene toluene 1.3-butadiene paraffins 0 0 25 50 0 0 5 10 1st dimension retention time (min) 1st dimension retention time (min) (a) (b)  C 4- 1. Conventional 1D part  C 5+ 2. Comprehensive 2D part

  15. Methusalem Advisory Board, 28/06/2010 Kerosene Steam Cracking 5 phenanthrene acenapthene anthracene acenapthylene biphenyl naphthalene methyl-indenes indene styrene vinyltoluene methyl-naphthalenes benzene ethyl-Bz toluene pyrene xylenes tri-methyl-Bz 0 80 20 35 50 65 1st dimension retention time (min) Reduced peak overlap  More accurate quantification More straightforward peak identification  Quantification of approximately 150 chemical components

  16. Methusalem Advisory Board, 28/06/2010 Kerosene Steam Cracking COT = 800 C COT = 840 C 1.8 1.8 vinyltoluene vinylstyrene vinyltoluene vinylstyrene 2nd dimension retention time (s) 2nd dimension retention time (s) C5 alkyl- C5 alkyl- benzenes benzenes C4 alkyl- C3 alkyl- C4 alkyl- C3 alkyl- benzenes benzenes benzenes benzenes nC14 nC14 nC10 nC10 0 0 45 55 35 35 45 1st dimension retention time (min) 1st dimension retention time (min) (a) (b) Reduced peak overlap  More accurate quantification More straightforward peak identification  Quantification of approximately 150 chemical components

  17. Methusalem Advisory Board, 28/06/2010 Kerosene Steam Cracking  Quantification of approximately 150 chemical components Yields (wt%) Yields (wt%) COT = 800°C COT = 840°C COT = 800°C COT = 840°C methane 8.736 12.718 indene 0.489 0.799 ethene 22.325 24.045 naphtalene 2.520 2.961 ethane 2.868 2.587 1-methyl-napthalene 2.401 2.126 propene 13.972 11.933 2-methyl-napthalene 1.919 1.673 propane 0.549 0.419 biphenyl 0.221 0.200 1.3-butadiene 4.657 4.520 2-ethyl-naphthalene 0.831 0.524 benzene 4.790 7.111 1.5-dimethyl-napthalene 0.343 0.252 toluene 3.051 3.656 1.6-dimethyl-napthalene 0.901 0.692 ethylbenzene 0.489 0.419 2-ethenyl-napthalene 0.230 0.491 m-xylene 0.759 0.874 1.4-dimethyl-napthalene 0.400 0.333 p-xylene 0.216 0.014 biphenylene 0.170 0.496 styrene 0.721 1.231 2-methyl-biphenyl 0.046 0.037 o-xylene 0.376 0.394 acenaphthylene 0.177 0.154 propylbenzene 0.066 0.019 phenanthrene 0.285 0.746 1-ethyl-2-methyl-benzene 0.369 0.313 anthracene 0.077 0.205 1.3.5-trimethyl-benzene 0.382 0.344 methyl-phenanthrene 0.187 0.285 1-methyl-indene 1.227 0.232 methyl-anthracene 0.035 0.329 2-methyl-indene 0.012 0.395 pyrene 0.107 0.233

  18. Methusalem Advisory Board, 28/06/2010 Renewable Naphtha Steam Cracking Effect of Coil Oulet Temperature ethylene propylene 1,3-butadiene 1-butene benzene pygas fuel oil Symbols 35 Pilot Plant 30 Experiments 25 Yield (wt%) 20 Lines 15 Simulated with COILSIM1D 10 5 0 10 11 12 13 14 15 16 17 18 Methane Yield (wt%) Process conditions Detailed Detailed COILSIM1D feedstock product composition composition IDEAL continuity CRACKSIM equations PLUG FLOW

  19. Methusalem Advisory Board, 28/06/2010 FAME Pyrolysis 3D view ON-LINE effluent analysis 5 600 C C9 alkyl benzene C20:1 C7 alkyl benzene C5 alkyl C3 alkyl C2 alkyl benzene benzene benzene 1-heptadecene C18:1 1-pentadecene 1-tridecene 1-undecene C16:1 Unconverted 1-nonene FAME 1-heptene 0 100

  20. Methusalem Advisory Board, 28/06/2010 FAME Pyrolysis CO + CO2 : 15 wt% Ethylene : 25 wt% Benzene : 5 wt% Propylene : 12 wt% Toluene : 2.5 wt% 5 700 C 3D view biphenyl naphthalene di-aromatics benzene styrene toluene Methyl- mono- propanoate aromatics 1-pentadecene 1-tridecene 1-undecene 1-nonene 1-heptene saturates & olefins 1-pentene 0 100

  21. Methusalem Advisory Board, 28/06/2010 Conclusions • Comprehensive 2D GC  Combination of FID and TOF-MS on one setup • Molecular feedstock composition within reach • Detailed on-line analysis of pilot plant product  Increasing our insight in occurring chemistry

  22. Methusalem Advisory Board, 28/06/2010 Acknowledgement • Prof. Wol • Methusalem Funding Thank you for your attention!

  23. Methusalem Advisory Board, 28/06/2010 Glossary Pyrolysis : Thermal decomposition in the absence of air FAME : Fatty Acid Methyl Esters Modulator: High frequency sampling interface COT: Coil Outlet Temperature

Recommend


More recommend