Theory overview of DM-induced phonon excitations Tongyan Lin UCSD � Fermilab, June 5, 2019 For extended discussion of theory framework, see: TL, 1904.07915 (lecture notes); Gri ffi n, Knapen, TL, Zurek 1807.10291 (crystals); Knapen, TL, Zurek 1611.06228 (superfluid He); additional refs cited throughout this talk
Outline Why phonons? Calculating DM-phonon excitations Lessons and future work 2
<latexit sha1_base64="gtzuoeRVrqNvjc5ghu2RUVy4R4=">AIwHiclVtb9s2EFa7rfa8t3T7uC+HBcbs1fFk92Ut0ABdh2xDgAYdtiRFI1ugZUpmIkqyRGXJZP7JfRiwf7MjRdqx46GoAQN8uXvu7rnqEkWs0K47r937n7w4Uf3Gs2PW598+tnX+zc/KkSMs8oMdBGqf5mwkpaMwSeiyYiOmbLKeET2J6Orn4Sd2fXtK8YGnyh7jO6IiTKGEhC4jAI/+vX/aJ53Km4SQy7sA3hFyf1D8MKcBFXkH8pqAeYe9uzKP1zIlnWca8faYSArczYeSouFKEDH1R4DcwdeME3FCgwktNbTqNG4GUMJn7lBTMGmZSYUAbcV9s1dG9KY0E6W/LsbqQJ7wv9jsRba9gEScWCEvZh0cb4ONhaw7PYWjw4RJvcg6cXKlQjCsH0EcX9ASPBO0gE5t/b2+eIUXWMviZ3RNStmZdxdjVUOeZiIFL6ahWNRpV9qeiJQXCAXnEs4B6+3rQYqNVxPWa1Y8oSmSJd+6p9jLKTHK+a5qLiPlgiRs2gmMINW4OTDBO5AkXhW9w/AFwmnR/3nb1LvIpHI0r2tOpsShuZT+eat94DNs1oEfqpanEYEF1vyvJTasG7dSmCV6Rc2oXZ+bnNHaL+btOtOFOE64OQ/rke+BisU+W29oTcTXaXMUacv8I/1ueqZjJEvOi/Z5WoCjoyAKi/GQZwSP5SqDBZFi3XVxiSJYgpLM1i8c04WLpJfu1lIVOt/4O1kHs2QSzjF8K5mQ/FZXelHJYImI4frkL21BtwU9JypQxbvK1dSXKZXUd0bfdyOXYx3Qf1rqwvjanZ1X0wPJnQlsBa0M4gleKJh3KWklZq70D3owIWJ6PvSmJIpbY+/W+Iip2wDBYTU2aEKZv2gbxXd1ePMl53Z0geVPo7V/1xVh9K2yDEvRK5LxCyUOZMAEBjWOpZK8jJ7QUeZqYN8DtD+wrgLODM9LMoWLbaYWFwWsXwzFrP4UnOXRZFS5/eFj9lTt+f2Xf3DxWN38OzJYKlv7HKtGUOmR8rGR8fhRvQc2Nfuze2wl9zOvgGnLtVG6fJWNcKwMRb6jCdlC9fzbO9oncB39n1YPtxcDs9h1zO+1v/O3N02DktNEBDEpirOBm4lRXLBgpjKlcWNCPBYnoGS4TgjSOKs26hDaeTCFMc/zjPOnTmx4V4UVxzSdoyYmYFZt36nDb3VkpwqejiVZKWgS1IHCMgacXPU1hynLaSDia1yQIGeYKwQzgoQJ/Oa3kITBZsm3FyfD/uBhf/jbo90XLw0dTedr5xun4wycH5wXzq/Oa+fYCRr7jaARN3jzZXPWTJvz2vTuHePzlbP2a/71H8c04c8=</latexit> <latexit sha1_base64="Nq35FAGjcLukSoWfosYUVMkqfew=">AIwniclVb9s2Fa7rfa8W7o97uVgTF7dVzZbcWaLDukm0I0KDlqRoZAu0TMt0REmWqCyBzD+5p+3f7JAifYuHogYMkDz373znaJRGLBeu+du+9/8G9Wv3Dxkcf/LpZ3v3Pz/LkyIL6GmQREn2ekRyGrGYngomIvo6zSjho4iejy5/UvLzK5rlLIn/FDcpHXASxmzCAiLwyb9/75/mWav0RhPIZBsOAby84P4xeJOMBGXoH8tyAUYOB/bkHy9kwxrOtWFl0JOleRv2pfWFXoAOywMGRgZeME7EyhlIaGymUXnrg5cyGPmlF0wZpFJiQilwX103vHtjGgnS2pFneytNeFfXb0m80fRyFnJiHWEph/B4y/mw32jO4Tn0TQC4QlHGgZNrFYtxZQH6ZKe4ZNgnObQqrQfasFLFGAxi1/QNC5ka95eDFURWZKBLyITsSiyrvU+kQkPEdXMJNYxwy8zq4iqNTuOkprBZMnNEa69nN/hrEQHy+fZ6LkPmqi4yFU7FQhWnJMVErkFh+AbvDwCPceuHgzdtfQt9CifDknZ0aiyOaSalP2s0j3yG3TryJ6rnCachwcOPK+kVqx6t2JYaRrWMLbPberIQ+TfbQVZArvsX7NtzwENYBr0LOVbA+90+w4X9YoDomZQSMzgt2tZqBE0Oh0otwFMfEn0hVBwvDxSZvIxKHEYWlGizeOikLF9GvzKxLVU1AUcbIQ9sgljGr4RzMyEKzPaKOiwWMB4+WoXsqC2wTmq5oYt3tauIFpm1xJt275MDl1M90F1KyqhUTW3qhMGJxPaAliRrQ8n8FLBpENZLSkrurfAmxIBy/ehNyZhSDPL7OE3S7+IKdvyAkLq7LDT027QtZRu64Hmy87s6INKH+nzP6Ly+GtpG4S+BL0WGS+R81DETEBAo0gq3uvIMS1ElsRmCbjd3hotEeF5QcZwuUvV+p3Qv/TKUMjqj8Fo4GpdvtP3GfPXU7btfVPzw8cXvPvu0t2Y5drjhjwDQTZCnj41ZYWwgVNnrdvbMR2pj14Bpw7VzuniWjXDEDPa6xwnZQLUAbZ/dEHoK/t2+rh9uHnjnsO+b3yt/72xsnQcFpLIKI5PlFz03FoCSZYEFEcUOU1JcElCeoHmCMg1KjLqGJL2OYJBn+cZ7067pFSXie3/ARanIipvm2TD3ukl0UYvJ0ULI4LQSNgyrQpIgAJ1d9z2HMhqI6AYPJMgY5grBlCBgAr/6DQSht13y7cNZv9t71O3/nj/xY8GjrzpfOV03J6znfOC+c35Vz6gS172u0FteS+s/1WX1ezyvVu3eMzRfOxq+A9zI+Ft</latexit> Why phonons? 1. Two most common elementary excitations in solid state materials: electrons and phonons. Phonons must be considered for low mass dark matter Momentum transfer q < 2 m χ v max ∼ 4 keV × ( m χ / MeV) 2 m χ v 2 ω < 1 Energy deposited max ∼ 2 eV × ( m χ / MeV) 1/(interparticle spacing) q >> O(1-10) keV → recoil against individual nuclei q << O(1-10) keV → excite phonons (lattice/fluid vibrations), most relevant for sub-MeV dark matter 3 *Numbers are material dependent
<latexit sha1_base64="Nq35FAGjcLukSoWfosYUVMkqfew=">AIwniclVb9s2Fa7rfa8W7o97uVgTF7dVzZbcWaLDukm0I0KDlqRoZAu0TMt0REmWqCyBzD+5p+3f7JAifYuHogYMkDz373znaJRGLBeu+du+9/8G9Wv3Dxkcf/LpZ3v3Pz/LkyIL6GmQREn2ekRyGrGYngomIvo6zSjho4iejy5/UvLzK5rlLIn/FDcpHXASxmzCAiLwyb9/75/mWav0RhPIZBsOAby84P4xeJOMBGXoH8tyAUYOB/bkHy9kwxrOtWFl0JOleRv2pfWFXoAOywMGRgZeME7EyhlIaGymUXnrg5cyGPmlF0wZpFJiQilwX103vHtjGgnS2pFneytNeFfXb0m80fRyFnJiHWEph/B4y/mw32jO4Tn0TQC4QlHGgZNrFYtxZQH6ZKe4ZNgnObQqrQfasFLFGAxi1/QNC5ka95eDFURWZKBLyITsSiyrvU+kQkPEdXMJNYxwy8zq4iqNTuOkprBZMnNEa69nN/hrEQHy+fZ6LkPmqi4yFU7FQhWnJMVErkFh+AbvDwCPceuHgzdtfQt9CifDknZ0aiyOaSalP2s0j3yG3TryJ6rnCachwcOPK+kVqx6t2JYaRrWMLbPberIQ+TfbQVZArvsX7NtzwENYBr0LOVbA+90+w4X9YoDomZQSMzgt2tZqBE0Oh0otwFMfEn0hVBwvDxSZvIxKHEYWlGizeOikLF9GvzKxLVU1AUcbIQ9sgljGr4RzMyEKzPaKOiwWMB4+WoXsqC2wTmq5oYt3tauIFpm1xJt275MDl1M90F1KyqhUTW3qhMGJxPaAliRrQ8n8FLBpENZLSkrurfAmxIBy/ehNyZhSDPL7OE3S7+IKdvyAkLq7LDT027QtZRu64Hmy87s6INKH+nzP6Ly+GtpG4S+BL0WGS+R81DETEBAo0gq3uvIMS1ElsRmCbjd3hotEeF5QcZwuUvV+p3Qv/TKUMjqj8Fo4GpdvtP3GfPXU7btfVPzw8cXvPvu0t2Y5drjhjwDQTZCnj41ZYWwgVNnrdvbMR2pj14Bpw7VzuniWjXDEDPa6xwnZQLUAbZ/dEHoK/t2+rh9uHnjnsO+b3yt/72xsnQcFpLIKI5PlFz03FoCSZYEFEcUOU1JcElCeoHmCMg1KjLqGJL2OYJBn+cZ7067pFSXie3/ARanIipvm2TD3ukl0UYvJ0ULI4LQSNgyrQpIgAJ1d9z2HMhqI6AYPJMgY5grBlCBgAr/6DQSht13y7cNZv9t71O3/nj/xY8GjrzpfOV03J6znfOC+c35Vz6gS172u0FteS+s/1WX1ezyvVu3eMzRfOxq+A9zI+Ft</latexit> <latexit sha1_base64="gtzuoeRVrqNvjc5ghu2RUVy4R4=">AIwHiclVtb9s2EFa7rfa8t3T7uC+HBcbs1fFk92Ut0ABdh2xDgAYdtiRFI1ugZUpmIkqyRGXJZP7JfRiwf7MjRdqx46GoAQN8uXvu7rnqEkWs0K47r937n7w4Uf3Gs2PW598+tnX+zc/KkSMs8oMdBGqf5mwkpaMwSeiyYiOmbLKeET2J6Orn4Sd2fXtK8YGnyh7jO6IiTKGEhC4jAI/+vX/aJ53Km4SQy7sA3hFyf1D8MKcBFXkH8pqAeYe9uzKP1zIlnWca8faYSArczYeSouFKEDH1R4DcwdeME3FCgwktNbTqNG4GUMJn7lBTMGmZSYUAbcV9s1dG9KY0E6W/LsbqQJ7wv9jsRba9gEScWCEvZh0cb4ONhaw7PYWjw4RJvcg6cXKlQjCsH0EcX9ASPBO0gE5t/b2+eIUXWMviZ3RNStmZdxdjVUOeZiIFL6ahWNRpV9qeiJQXCAXnEs4B6+3rQYqNVxPWa1Y8oSmSJd+6p9jLKTHK+a5qLiPlgiRs2gmMINW4OTDBO5AkXhW9w/AFwmnR/3nb1LvIpHI0r2tOpsShuZT+eat94DNs1oEfqpanEYEF1vyvJTasG7dSmCV6Rc2oXZ+bnNHaL+btOtOFOE64OQ/rke+BisU+W29oTcTXaXMUacv8I/1ueqZjJEvOi/Z5WoCjoyAKi/GQZwSP5SqDBZFi3XVxiSJYgpLM1i8c04WLpJfu1lIVOt/4O1kHs2QSzjF8K5mQ/FZXelHJYImI4frkL21BtwU9JypQxbvK1dSXKZXUd0bfdyOXYx3Qf1rqwvjanZ1X0wPJnQlsBa0M4gleKJh3KWklZq70D3owIWJ6PvSmJIpbY+/W+Iip2wDBYTU2aEKZv2gbxXd1ePMl53Z0geVPo7V/1xVh9K2yDEvRK5LxCyUOZMAEBjWOpZK8jJ7QUeZqYN8DtD+wrgLODM9LMoWLbaYWFwWsXwzFrP4UnOXRZFS5/eFj9lTt+f2Xf3DxWN38OzJYKlv7HKtGUOmR8rGR8fhRvQc2Nfuze2wl9zOvgGnLtVG6fJWNcKwMRb6jCdlC9fzbO9oncB39n1YPtxcDs9h1zO+1v/O3N02DktNEBDEpirOBm4lRXLBgpjKlcWNCPBYnoGS4TgjSOKs26hDaeTCFMc/zjPOnTmx4V4UVxzSdoyYmYFZt36nDb3VkpwqejiVZKWgS1IHCMgacXPU1hynLaSDia1yQIGeYKwQzgoQJ/Oa3kITBZsm3FyfD/uBhf/jbo90XLw0dTedr5xun4wycH5wXzq/Oa+fYCRr7jaARN3jzZXPWTJvz2vTuHePzlbP2a/71H8c04c8=</latexit> Why phonons? 1. Two most common elementary excitations in solid state materials: electrons and phonons. Phonons must be considered for low mass dark matter Momentum transfer q < 2 m χ v max ∼ 4 keV × ( m χ / MeV) 2 m χ v 2 ω < 1 Energy deposited max ∼ 2 eV × ( m χ / MeV) ω >> O(0.1) eV → multiphonon excitations, nuclear recoil excite single phonons (lattice/fluid vibrations), ω << O(0.1) eV → most relevant for sub-MeV dark matter 4 *Numbers are material dependent
Why phonons? 1. Two most common elementary excitations in solid state materials: electrons and phonons. Phonons must be considered for low mass dark matter DM-phonon scattering DM-nucleon scattering χ χ χ χ φ ρ Phonon n n quasiparticle 5
Why phonons? 2. Kinematics of phonon excitation is suited to ~10 keV-MeV dark matter. Phonon energies ~1-100 meV y g r e Typical recoil energy n e M keV D l Nuclear recoils a t o T eV Phonons meV keV MeV GeV TeV Dark matter mass 6
Recommend
More recommend