The “Virtual Climatic Wind Tunnel” project STAR CCM+, London, 22 March 2010 Author: J. Arbiol, E. Aramburu
Content Overview of IDIADA Overview of VCWT project UH thermal simulation State of the art Benchmark The VCWT methodology Design Modules Automatic surface meshing Automatic volume mesh Examples VCWT exe Input (Command / Organisation / Set-up) Output Code Set-up STARCCM+ & Radtherm coupling Correlation
Overview of IDIADA Development partner to the automotive industry Product development projects 850 engineers in 15 countries world-wide Automotive services • Testing facilities • Proving ground • Engineering Concept Product Product Styling & Package & Development Homologation Validation Finding & Engineering Engineering Feasibility Surfacing Test Preparation Benchmarking Design (CAD) Simul. (CAE)
Overview of the VCWT project Main Characteristics IDIADA is developing the “Virtual Climatic Wind Tunnel” project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA will calculate the cooling system temperatures and the UH parts temperatures for gradients, Vmax and extended idle tests. The VCWT must be fast, robust and accurate. The VCWT project is a 2 year project (2007 & 2008) and it is funded by IDIADA and the Catalan Government
The VCWT methodology Modules A software benchmark for all of the next modules has been carried out: Geometry clean-up Surface meshing Volume mesh CFD simulation Thermal simulation Results analysis (HTML) Currently, the chosen software is: ANSA, STARCCM+ & RADTHERM
The VCWT methodology. VCWT script: inputs Command vcwt26 /users/kk/work data_100.inp 1 0 data_1.txt 0 1000 Executable Working folder Mesh file Scale factor Number of prism layer Data file (inlet velocity, fan rotation,…) Type of simulation Number of iterations
The VCWT methodology. VCWT script: input Surface clean-up & organisation holes’ closure & wrappings. Data translation & surface meshing, 428 BND_FAN1_Mrf1Body_RAD-0_INTERFACE_T2_SideMrf1 428 BND_FAN1_Mrf1Body_RAD-0_INTERFACE_T2_SideMrf1 429 BND_FAN1_Mrf1Body_RAD-0_INTERFACE_T4_InletMrf1 429 BND_FAN1_Mrf1Body_RAD-0_INTERFACE_T4_InletMrf1 433 BND_FAN1_Mrf1Body_RAD-0_INTERFACE_T4_OutletMrf1 433 BND_FAN1_Mrf1Body_RAD-0_INTERFACE_T4_OutletMrf1 500 BND_FAN1_Mrf1Body_RAD-0_WALL_T3_Fan1 500 BND_FAN1_Mrf1Body_RAD-0_WALL_T3_Fan1 430 BND_FAN2_Mrf2Body_RAD-0_INTERFACE_T2_SideMrf2 430 BND_FAN2_Mrf2Body_RAD-0_INTERFACE_T2_SideMrf2 431 BND_FAN2_Mrf2Body_RAD-0_INTERFACE_T4_InletMrf2 431 BND_FAN2_Mrf2Body_RAD-0_INTERFACE_T4_InletMrf2 432 BND_FAN2_Mrf2Body_RAD-0_INTERFACE_T4_OutletMrf2 432 BND_FAN2_Mrf2Body_RAD-0_INTERFACE_T4_OutletMrf2 501 BND_FAN2_Mrf2Body_RAD-0_WALL_T3_Fan2 501 BND_FAN2_Mrf2Body_RAD-0_WALL_T3_Fan2 416 BND_HXCON1_HxConBody_RAD-0_INTERFACE_T4_InletCondensador 416 BND_HXCON1_HxConBody_RAD-0_INTERFACE_T4_InletCondensador 417 BND_HXCON1_HxConBody_RAD-0_INTERFACE_T4_OutletCondensador 417 BND_HXCON1_HxConBody_RAD-0_INTERFACE_T4_OutletCondensador 418 BND_HXCON1_HxConBody_RAD-0_WALL_T5_LateralesCondensador 418 BND_HXCON1_HxConBody_RAD-0_WALL_T5_LateralesCondensador 421 BND_HXINT1_HxInterIzqBody_RAD-0_INTERFACE_T4_InletIntercoolerIzq 421 BND_HXINT1_HxInterIzqBody_RAD-0_INTERFACE_T4_InletIntercoolerIzq 420 BND_HXINT1_HxInterIzqBody_RAD-0_INTERFACE_T4_OutletIntercoolerIzq 420 BND_HXINT1_HxInterIzqBody_RAD-0_INTERFACE_T4_OutletIntercoolerIzq 419 BND_HXINT1_HxInterIzqBody_RAD-0_WALL_T5_LateralesIntercoolerIzq 419 BND_HXINT1_HxInterIzqBody_RAD-0_WALL_T5_LateralesIntercoolerIzq 424 BND_HXINT2_HxInterDerBody_RAD-0_INTERFACE_T4_InletIntercoolerDer 424 BND_HXINT2_HxInterDerBody_RAD-0_INTERFACE_T4_InletIntercoolerDer 423 BND_HXINT2_HxInterDerBody_RAD-0_INTERFACE_T4_OutletIntercoolerDer 423 BND_HXINT2_HxInterDerBody_RAD-0_INTERFACE_T4_OutletIntercoolerDer 422 BND_HXINT2_HxInterDerBody_RAD-0_WALL_T5_LateralesIntercoolerDer 422 BND_HXINT2_HxInterDerBody_RAD-0_WALL_T5_LateralesIntercoolerDer 427 BND_HXRAD1_HxRadBody_RAD-0_INTERFACE_T4_InletRadiador 427 BND_HXRAD1_HxRadBody_RAD-0_INTERFACE_T4_InletRadiador 426 BND_HXRAD1_HxRadBody_RAD-0_INTERFACE_T4_OutletRadiador 426 BND_HXRAD1_HxRadBody_RAD-0_INTERFACE_T4_OutletRadiador 425 BND_HXRAD1_HxRadBody_RAD-0_WALL_T5_LateralesRadiador 425 BND_HXRAD1_HxRadBody_RAD-0_WALL_T5_LateralesRadiador Model organisation 111 BND_UH_Body_RAD-0_WALL_T10_BodyP5 111 BND_UH_Body_RAD-0_WALL_T10_BodyP5 108 BND_UH_Body_RAD-0_WALL_T16_BodyP2 108 BND_UH_Body_RAD-0_WALL_T16_BodyP2 110 BND_UH_Body_RAD-0_WALL_T20_BodyP4 110 BND_UH_Body_RAD-0_WALL_T20_BodyP4 109 BND_UH_Body_RAD-0_WALL_T25_BodyP3 109 BND_UH_Body_RAD-0_WALL_T25_BodyP3 42 BND_UH_Body_RAD-0_WALL_T30_BodyP1 42 BND_UH_Body_RAD-0_WALL_T30_BodyP1
The VCWT methodology. VCWT script: input Set-up (BOCO file) Type of simulation MODEL: :BENCHMARK THERMAL CALCULATION: TYPE: :2: SETUPS: :1: Number of Set-ups ------------------------------------------------------------------------------------------ VRS_INT: :-1200,-1200,-320:2000,1200,1500: SIZE_VR_INT: :22: VRS_EXT: :-2500,-1400,-320:4000,1400,2200: SIZE_VR_EXT: :100: ------------------------------------------------------------------------------------------ VINUH: :31.1: TINUH: :300: KINUH: :0.001: EINUH: :0.001: AFBODY: :2: TOUTUH: :300: KOUTUH: :0.001: EOUTUH: :0.001: VIMUH: :-3: TIMUH: :300: KIMUH: :0.001: Specific Bocos: EIMUH: :0.001: VSF: :31.1,0,0: VSN: :31.1,0,0: • Inlet, ------------------------------------------------------------------------------------------ OR_D: : 9.8,-801,26.4: WR_D: :-100: • ------------------------------------------------------------------------------------------ Outlet, OW_FAN1: :-478.8,-184.75,251: V3_FAN1: :10.75,-0.0047,-0.45: WF_FAN1: :400: • floor, ------------------------------------------------------------------------------------------ V1_HXRAD1: :17.970,0,-0.942: V2_HXRAD1: : 0,1,0: • wheels, R1_HXRAD1: :150: R2_HXRAD1: :600: V1W_HXRAD1: :0,0,1: • V2W_HXRAD1: :1,0,0: fans, VIN_INHXRAD1: :1.16: TIN_INHXRAD1: :355: TOUT_OUTHXRAD1: :300: • porosities, QT_HXRAD1: :21800: TITULO_HXRAD1: :MassFlowRateAire Q: • heat exchange, PTS_HXRAD1: :4: P1_HXRAD1: :1.207 59840: P2_HXRAD1: :1.810 77430: • P3_HXRAD1: :2.414 90880: etc.. P4_HXRAD1: :3.017 101660: MFH_HXRAD1: :2: TIH_HXRAD1: :363: CPH_HXRAD1: :4180: TIC_HXRAD1: :293: CPC_HXRAD1: :1024: DC_HXRAD1: :1.1: ------------------------------------------------------------------------------------------
The VCWT methodology. VCWT script: output Outputs WORKING VCWT VCWT_run.sh FOLDER Log file simulation PARAM_1 SETUP_1 Hardcopies POST HTML SETUP_2 simulation PARAM_2 . Hardcopies POST . HTML . simulation PARAM_n SETUP_n Hardcopies POST HTML
The VCWT methodology. VCWT script: output Code VCWT_run.sh #Script for CFD models with VCWT echo “VCWT calculations" #Mesh session with the geometric param: PARAM_100 echo “Doing the mesh: PARAM_100" vcwt_MESH_PARAM_100.java . . #Mesh calculation session: PARAM_100 with setup: 1 . . echo “Doing mesh: PARAM_100 with setup: 1" starccm+ -np 4 -batch vcwt_MESH_PARAM_100_SETUP_1.java data_100_SETUP_1_iniOK_rough_3mm_03.sim . . echo "Post-processing the mesh: PARAM_100 with setup: 1" starccm+ -batch vcwt_MESH_PARAM_100_SETUP_1_POST.java data_100_SETUP_1_iniCOLD_FINAL.sim echo echo echo “Calculation is done “
The VCWT methodology. Modules Automatic surface meshing ANSA WRAP Automatic element size assignation Automatic clean-up loop VOLUM REMESH
The VCWT methodology. Modules Automatic volume mesh ROBUSTNESS 95% Probability of running a simulation
The VCWT methodology. Modules Exchangers The needed regions for each type of simulation are: Cold flow means that there is not energy. In this model only the fluid equations (momentum, mass and turbulence) will be calculated. Applications: exterior aerodynamics, air conditioned systems, defrost. With the Hot flow dual it is possible to run different types of coupled simulations in a single model (with energy). Applications: underhood. Dual model External flow simulation Internal flow simulation UH region INHx region Hx are linked to both simulations. Hx region The released heat in the circuit’s Hx region OUTHx region water will be the same that the released in the air of the UH region. HXRAD1 INHXRAD1 OUTHXRAD1
Recommend
More recommend