the riemann hypothesis history and ideas
play

The Riemann Hypothesis, History and ideas Francesco Pappalardi ( x - PowerPoint PPT Presentation

Lecture in Number Theory College of Science for Women Baghdad University March 31, 2014 The Riemann Hypothesis, History and ideas Francesco Pappalardi ( x ) = # { p x s.t. p is prime } 1 The Riemann Hypothesis Some conjectures about


  1. π ( x ) = # { p ≤ x s.t. p is prime } 9 The Riemann Hypothesis The School of Athens (Raffaello Sanzio) Universit` a Roma Tre

  2. π ( x ) = # { p ≤ x s.t. p is prime } 9 The Riemann Hypothesis The School of Athens (Raffaello Sanzio) Euclid of Alessandria Birth: 325 A.C. (circa) Death: 265 A.C. (circa) Universit` a Roma Tre

  3. π ( x ) = # { p ≤ x s.t. p is prime } 9 The Riemann Hypothesis The School of Athens (Raffaello Sanzio) Euclid of Alessandria Birth: 325 A.C. (circa) Death: 265 A.C. (circa) There exist infinitely many prime numbers: π ( x ) → ∞ if x → ∞ Universit` a Roma Tre

  4. π ( x ) = # { p ≤ x s.t. p is prime } 10 The Riemann Hypothesis The sieve to count primes 220AC Greeks (Eratosthenes of Cyrene) Universit` a Roma Tre

  5. π ( x ) = # { p ≤ x s.t. p is prime } 11 The Riemann Hypothesis Legendre’s Intuition Adrien-Marie Legendre 1752-1833 x π ( x ) is about log x log x is the natural logarithm Universit` a Roma Tre

  6. π ( x ) = # { p ≤ x s.t. p is prime } 12 The Riemann Hypothesis x π ( x ) is about log x Universit` a Roma Tre

  7. π ( x ) = # { p ≤ x s.t. p is prime } 12 The Riemann Hypothesis x π ( x ) is about log x ; ☞ ☞ ; ; ☞ . ☞ ; ☞ ☞ Universit` a Roma Tre

  8. π ( x ) = # { p ≤ x s.t. p is prime } 12 The Riemann Hypothesis x π ( x ) is about log x ☞ What does it mean log x ? ; ☞ ; ; ☞ . ☞ ; ☞ ☞ Universit` a Roma Tre

  9. π ( x ) = # { p ≤ x s.t. p is prime } 12 The Riemann Hypothesis x π ( x ) is about log x ☞ What does it mean log x ? It is the natural logarithm of x ; ☞ ; ; ☞ . ☞ ; ☞ ☞ Universit` a Roma Tre

  10. π ( x ) = # { p ≤ x s.t. p is prime } 12 The Riemann Hypothesis x π ( x ) is about log x ☞ What does it mean log x ? It is the natural logarithm of x ; ☞ Racall that the logarithm in base a of b is that number t s.t. a t = b ; ; ☞ . ☞ ; ☞ ☞ Universit` a Roma Tre

  11. π ( x ) = # { p ≤ x s.t. p is prime } 12 The Riemann Hypothesis x π ( x ) is about log x ☞ What does it mean log x ? It is the natural logarithm of x ; ☞ Racall that the logarithm in base a of b is that number t s.t. a t = b ; ☞ Therefore t = log a b means that a t = b ; . ☞ ; ☞ ☞ Universit` a Roma Tre

  12. π ( x ) = # { p ≤ x s.t. p is prime } 12 The Riemann Hypothesis x π ( x ) is about log x ☞ What does it mean log x ? It is the natural logarithm of x ; ☞ Racall that the logarithm in base a of b is that number t s.t. a t = b ; ☞ Therefore t = log a b means that a t = b ; for example log 2 8 = 3 since 2 3 = 8 . ☞ ; ☞ ☞ Universit` a Roma Tre

  13. π ( x ) = # { p ≤ x s.t. p is prime } 12 The Riemann Hypothesis x π ( x ) is about log x ☞ What does it mean log x ? It is the natural logarithm of x ; ☞ Racall that the logarithm in base a of b is that number t s.t. a t = b ; ☞ Therefore t = log a b means that a t = b ; for example log 2 8 = 3 since 2 3 = 8 and log 5 625 = 4 since 5 4 = 625. ☞ ; ☞ ☞ Universit` a Roma Tre

  14. π ( x ) = # { p ≤ x s.t. p is prime } 12 The Riemann Hypothesis x π ( x ) is about log x ☞ What does it mean log x ? It is the natural logarithm of x ; ☞ Racall that the logarithm in base a of b is that number t s.t. a t = b ; ☞ Therefore t = log a b means that a t = b ; for example log 2 8 = 3 since 2 3 = 8 and log 5 625 = 4 since 5 4 = 625. ☞ When the base a = e = 2 , 7182818284590 · · · is the Nepier number, ; ☞ ☞ Universit` a Roma Tre

  15. π ( x ) = # { p ≤ x s.t. p is prime } 12 The Riemann Hypothesis x π ( x ) is about log x ☞ What does it mean log x ? It is the natural logarithm of x ; ☞ Racall that the logarithm in base a of b is that number t s.t. a t = b ; ☞ Therefore t = log a b means that a t = b ; for example log 2 8 = 3 since 2 3 = 8 and log 5 625 = 4 since 5 4 = 625. ☞ When the base a = e = 2 , 7182818284590 · · · is the Nepier number, the logarithm in base e is called natural logarithm; ☞ ☞ Universit` a Roma Tre

  16. π ( x ) = # { p ≤ x s.t. p is prime } 12 The Riemann Hypothesis x π ( x ) is about log x ☞ What does it mean log x ? It is the natural logarithm of x ; ☞ Racall that the logarithm in base a of b is that number t s.t. a t = b ; ☞ Therefore t = log a b means that a t = b ; for example log 2 8 = 3 since 2 3 = 8 and log 5 625 = 4 since 5 4 = 625. ☞ When the base a = e = 2 , 7182818284590 · · · is the Nepier number, the logarithm in base e is called natural logarithm; ☞ hence log 10 = 2 . 30258509299404568401 since e 2 . 30258509299404568401 = 10 ☞ Universit` a Roma Tre

  17. π ( x ) = # { p ≤ x s.t. p is prime } 12 The Riemann Hypothesis x π ( x ) is about log x ☞ What does it mean log x ? It is the natural logarithm of x ; ☞ Racall that the logarithm in base a of b is that number t s.t. a t = b ; ☞ Therefore t = log a b means that a t = b ; for example log 2 8 = 3 since 2 3 = 8 and log 5 625 = 4 since 5 4 = 625. ☞ When the base a = e = 2 , 7182818284590 · · · is the Nepier number, the logarithm in base e is called natural logarithm; ☞ hence log 10 = 2 . 30258509299404568401 since e 2 . 30258509299404568401 = 10 ☞ finally log x is a function Universit` a Roma Tre

  18. π ( x ) = # { p ≤ x s.t. p is prime } 13 The Riemann Hypothesis The function x/ log x f ( x ) = x/ log x Universit` a Roma Tre

  19. π ( x ) = # { p ≤ x s.t. p is prime } 14 The Riemann Hypothesis x π ( x ) is about log x Universit` a Roma Tre

  20. π ( x ) = # { p ≤ x s.t. p is prime } 14 The Riemann Hypothesis x π ( x ) is about log x π ( x ) x that is lim x/ log x = 1 and we write π ( x ) ∼ log x x →∞ Universit` a Roma Tre

  21. π ( x ) = # { p ≤ x s.t. p is prime } 14 The Riemann Hypothesis x π ( x ) is about log x π ( x ) x that is lim x/ log x = 1 and we write π ( x ) ∼ log x x →∞ x π ( x ) x log x 1000 168 145 10000 1229 1086 100000 9592 8686 1000000 78498 72382 10000000 664579 620420 100000000 5761455 5428681 1000000000 50847534 48254942 10000000000 455052511 434294482 100000000000 4118054813 3948131654 1000000000000 37607912018 36191206825 10000000000000 346065536839 334072678387 100000000000000 3204941750802 3102103442166 1000000000000000 29844570422669 28952965460217 10000000000000000 279238341033925 271434051189532 100000000000000000 2623557157654233 2554673422960305 1000000000000000000 24739954287740860 24127471216847324 10000000000000000000 234057667276344607 228576043106974646 100000000000000000000 2220819602560918840 2171472409516259138 Universit` a Roma Tre

  22. π ( x ) = # { p ≤ x s.t. p is prime } 15 The Riemann Hypothesis The Gauß Conjecture Johann Carl Friedrich Gauß(1777 - 1855) Universit` a Roma Tre

  23. π ( x ) = # { p ≤ x s.t. p is prime } 15 The Riemann Hypothesis The Gauß Conjecture Johann Carl Friedrich Gauß(1777 - 1855) � x du π ( x ) ∼ log u 0 Universit` a Roma Tre

  24. π ( x ) = # { p ≤ x s.t. p is prime } 16 The Riemann Hypothesis � x du What is it means log u ? 0 Universit` a Roma Tre

  25. π ( x ) = # { p ≤ x s.t. p is prime } 16 The Riemann Hypothesis � x du What is it means log u ? 0 What is it the integral of a function? Universit` a Roma Tre

  26. π ( x ) = # { p ≤ x s.t. p is prime } 16 The Riemann Hypothesis � x du What is it means log u ? 0 What is it the integral of a function? � b S = f ( x ) dx a Universit` a Roma Tre

  27. π ( x ) = # { p ≤ x s.t. p is prime } 16 The Riemann Hypothesis � x du What is it means log u ? 0 What is it the integral of a function? � b S = f ( x ) dx a Universit` a Roma Tre

  28. π ( x ) = # { p ≤ x s.t. p is prime } 17 The Riemann Hypothesis The function Logarithmic Integral Universit` a Roma Tre

  29. π ( x ) = # { p ≤ x s.t. p is prime } 17 The Riemann Hypothesis The function Logarithmic Integral � x du Therefore f ( x ) = log u is a function. Here is the plot: 0 Universit` a Roma Tre

  30. π ( x ) = # { p ≤ x s.t. p is prime } 17 The Riemann Hypothesis The function Logarithmic Integral � x du Therefore f ( x ) = log u is a function. Here is the plot: 0 1 / log x li( x ) Universit` a Roma Tre

  31. π ( x ) = # { p ≤ x s.t. p is prime } 18 The Riemann Hypothesis The function Logarithmic Integral Universit` a Roma Tre

  32. π ( x ) = # { p ≤ x s.t. p is prime } 18 The Riemann Hypothesis The function Logarithmic Integral � x du We set li( x ) = log u , the function Logarithmic Integral. Here is the plot: 0 Universit` a Roma Tre

  33. π ( x ) = # { p ≤ x s.t. p is prime } 18 The Riemann Hypothesis The function Logarithmic Integral � x du We set li( x ) = log u , the function Logarithmic Integral. Here is the plot: 0 li( x ) Universit` a Roma Tre

  34. π ( x ) = # { p ≤ x s.t. p is prime } 19 The Riemann Hypothesis More recent picture of Gauß Johann Carl Friedrich Gauß(1777 - 1855) � x du π ( x ) ∼ li( x ) := log u 0 Universit` a Roma Tre

  35. π ( x ) = # { p ≤ x s.t. p is prime } 20 The Riemann Hypothesis The function ”logarithmic integral“ of Gauß � x du li( x ) = log u 0 π ( x ) li( x ) x x log x 1000 168 178 145 10000 1229 1246 1086 100000 9592 9630 8686 1000000 78498 78628 72382 10000000 664579 664918 620420 100000000 5761455 5762209 5428681 1000000000 50847534 50849235 48254942 10000000000 455052511 455055614 434294482 100000000000 4118054813 4118066401 3948131654 1000000000000 37607912018 37607950281 36191206825 10000000000000 346065536839 346065645810 334072678387 100000000000000 3204941750802 3204942065692 3102103442166 1000000000000000 29844570422669 29844571475288 28952965460217 10000000000000000 279238341033925 279238344248557 271434051189532 100000000000000000 2623557157654233 2623557165610822 2554673422960305 1000000000000000000 24739954287740860 24739954309690415 24127471216847324 10000000000000000000 234057667276344607 234057667376222382 228576043106974646 100000000000000000000 2220819602560918840 2220819602783663484 2171472409516259138 Universit` a Roma Tre

  36. π ( x ) = # { p ≤ x s.t. p is prime } 21 The Riemann Hypothesis x The function li( x ) vs log x Universit` a Roma Tre

  37. π ( x ) = # { p ≤ x s.t. p is prime } 21 The Riemann Hypothesis x The function li( x ) vs log x Universit` a Roma Tre

  38. π ( x ) = # { p ≤ x s.t. p is prime } 21 The Riemann Hypothesis x The function li( x ) vs log x ✎ ☞ � x x dt x li( x ) = log x + log 2 t ∼ log x 0 ✍ ✌ via integration by parts Universit` a Roma Tre

  39. π ( x ) = # { p ≤ x s.t. p is prime } 22 The Riemann Hypothesis Chebishev Contribution Chebyshev Theorems 8 ≤ π ( x ) 7 ≤ 9 • x 8 log x π ( x ) • lim inf x/ log x ≤ 1 x →∞ π ( x ) • lim sup x/ log x ≥ 1 x →∞ • ∀ n , ∃ p , n < p < 2 n (Bertrand Postulate) Pafnuty Lvovich Chebyshev 1821 – 1894 Universit` a Roma Tre

  40. π ( x ) = # { p ≤ x s.t. p is prime } 23 The Riemann Hypothesis GREAT OPEN PROBLEM AT THE END OF: Universit` a Roma Tre

  41. π ( x ) = # { p ≤ x s.t. p is prime } 23 The Riemann Hypothesis GREAT OPEN PROBLEM AT THE END OF: ☞ ☞ ☞ ☞ ☞ Universit` a Roma Tre

  42. π ( x ) = # { p ≤ x s.t. p is prime } 23 The Riemann Hypothesis GREAT OPEN PROBLEM AT THE END OF: x ☞ To prove the Conjecture of Legendre – Gauß π ( x ) ∼ log x if x → ∞ ☞ ☞ ☞ ☞ Universit` a Roma Tre

  43. π ( x ) = # { p ≤ x s.t. p is prime } 23 The Riemann Hypothesis GREAT OPEN PROBLEM AT THE END OF: x ☞ To prove the Conjecture of Legendre – Gauß π ( x ) ∼ log x if x → ∞ � � π ( x ) � � ☞ that is: − 1 � → 0 if x → ∞ � � x � � log x � ☞ ☞ ☞ Universit` a Roma Tre

  44. π ( x ) = # { p ≤ x s.t. p is prime } 23 The Riemann Hypothesis GREAT OPEN PROBLEM AT THE END OF: x ☞ To prove the Conjecture of Legendre – Gauß π ( x ) ∼ log x if x → ∞ � � π ( x ) � � ☞ that is: − 1 � → 0 if x → ∞ � � x � � log x � � � x x � � ☞ that is: � π ( x ) − � is “much smaller” than log x if x → ∞ � � log x ☞ ☞ Universit` a Roma Tre

  45. π ( x ) = # { p ≤ x s.t. p is prime } 23 The Riemann Hypothesis GREAT OPEN PROBLEM AT THE END OF: x ☞ To prove the Conjecture of Legendre – Gauß π ( x ) ∼ log x if x → ∞ � � π ( x ) � � ☞ that is: − 1 � → 0 if x → ∞ � � x � � log x � � � x x � � ☞ that is: � π ( x ) − � is “much smaller” than log x if x → ∞ � � log x � � � � x x � � ☞ that is: � π ( x ) − � = o if x → ∞ � � log x log x ☞ Universit` a Roma Tre

  46. π ( x ) = # { p ≤ x s.t. p is prime } 23 The Riemann Hypothesis GREAT OPEN PROBLEM AT THE END OF: x ☞ To prove the Conjecture of Legendre – Gauß π ( x ) ∼ log x if x → ∞ � � π ( x ) � � ☞ that is: − 1 � → 0 if x → ∞ � � x � � log x � � � x x � � ☞ that is: � π ( x ) − � is “much smaller” than log x if x → ∞ � � log x � � � � x x � � ☞ that is: � π ( x ) − � = o if x → ∞ � � log x log x ☞ that is (to say it ` a la Gauß): | π ( x ) − li( x ) | = o (li( x )) if x → ∞ Universit` a Roma Tre

  47. π ( x ) = # { p ≤ x s.t. p is prime } 23 The Riemann Hypothesis GREAT OPEN PROBLEM AT THE END OF: x ☞ To prove the Conjecture of Legendre – Gauß π ( x ) ∼ log x if x → ∞ � � π ( x ) � � ☞ that is: − 1 � → 0 if x → ∞ � � x � � log x � � � x x � � ☞ that is: � π ( x ) − � is “much smaller” than log x if x → ∞ � � log x � � � � x x � � ☞ that is: � π ( x ) − � = o if x → ∞ � � log x log x ☞ that is (to say it ` a la Gauß): | π ( x ) − li( x ) | = o (li( x )) if x → ∞ This statement became part of history as The Prime Number Theorem. Universit` a Roma Tre

  48. π ( x ) = # { p ≤ x s.t. p is prime } 24 The Riemann Hypothesis Riemann Paper 1859 Riemann Hypothesis: | π ( x ) − li( x ) | ≪ √ x log x Revolutionary Idea: Use the function: ∞ 1 � ζ ( s ) = n s n =1 and complex analysis. (Ueber die Anzahl der Primzahlen unter einer gegebenen Gr¨ osse.) Monatsberichte der Berliner Akademie, 1859 Universit` a Roma Tre

  49. π ( x ) = # { p ≤ x s.t. p is prime } 25 The Riemann Hypothesis Let us make the point of the situation: Universit` a Roma Tre

  50. π ( x ) = # { p ≤ x s.t. p is prime } 25 The Riemann Hypothesis Let us make the point of the situation: ☞ ☞ ☞ ☞ ☞ ☞ Universit` a Roma Tre

  51. π ( x ) = # { p ≤ x s.t. p is prime } 25 The Riemann Hypothesis Let us make the point of the situation: ✞ ☎ | π ( x ) − li( x ) | ≪ √ x log x ☞ The Riemann Hypothesis (1859) ✝ ✆ ☞ ☞ ☞ ☞ ☞ Universit` a Roma Tre

  52. π ( x ) = # { p ≤ x s.t. p is prime } 25 The Riemann Hypothesis Let us make the point of the situation: ✞ ☎ | π ( x ) − li( x ) | ≪ √ x log x ☞ The Riemann Hypothesis (1859) ✝ ✆ ☞ Riemann does not complete the proof del Prime Number Theorem but he suggests the right way. ☞ ☞ ☞ ☞ Universit` a Roma Tre

  53. π ( x ) = # { p ≤ x s.t. p is prime } 25 The Riemann Hypothesis Let us make the point of the situation: ✞ ☎ | π ( x ) − li( x ) | ≪ √ x log x ☞ The Riemann Hypothesis (1859) ✝ ✆ ☞ Riemann does not complete the proof del Prime Number Theorem but he suggests the right way. ☞ The idea is to use the function ζ as a complex variable function ☞ ☞ ☞ Universit` a Roma Tre

  54. π ( x ) = # { p ≤ x s.t. p is prime } 25 The Riemann Hypothesis Let us make the point of the situation: ✞ ☎ | π ( x ) − li( x ) | ≪ √ x log x ☞ The Riemann Hypothesis (1859) ✝ ✆ ☞ Riemann does not complete the proof del Prime Number Theorem but he suggests the right way. ☞ The idea is to use the function ζ as a complex variable function ☞ Hadamard and de the Vall´ ee Poussin (1897) add the missing peace to Riemann’s program and prove the Prime Number Theorem ✞ ☎ −√ log x � � | π ( x ) − li( x ) | ≪ x exp . ✝ ✆ ☞ ☞ Universit` a Roma Tre

  55. π ( x ) = # { p ≤ x s.t. p is prime } 25 The Riemann Hypothesis Let us make the point of the situation: ✞ ☎ | π ( x ) − li( x ) | ≪ √ x log x ☞ The Riemann Hypothesis (1859) ✝ ✆ ☞ Riemann does not complete the proof del Prime Number Theorem but he suggests the right way. ☞ The idea is to use the function ζ as a complex variable function ☞ Hadamard and de the Vall´ ee Poussin (1897) add the missing peace to Riemann’s program and prove the Prime Number Theorem ✞ ☎ −√ log x � � | π ( x ) − li( x ) | ≪ x exp . ✝ ✆ ☞ The idea is to use ζ to study primes was already suggested by Euler!! ☞ Universit` a Roma Tre

  56. π ( x ) = # { p ≤ x s.t. p is prime } 25 The Riemann Hypothesis Let us make the point of the situation: ✞ ☎ | π ( x ) − li( x ) | ≪ √ x log x ☞ The Riemann Hypothesis (1859) ✝ ✆ ☞ Riemann does not complete the proof del Prime Number Theorem but he suggests the right way. ☞ The idea is to use the function ζ as a complex variable function ☞ Hadamard and de the Vall´ ee Poussin (1897) add the missing peace to Riemann’s program and prove the Prime Number Theorem ✞ ☎ −√ log x � � | π ( x ) − li( x ) | ≪ x exp . ✝ ✆ ☞ The idea is to use ζ to study primes was already suggested by Euler!! ☞ Schoenfeld (1976), Riemann Hypothesis is equivalent to ✞ ☎ √ x log( x ) if x ≥ 2657 1 | π ( x ) − li( x ) | < ✝ 8 π ✆ Universit` a Roma Tre

  57. π ( x ) = # { p ≤ x s.t. p is prime } 26 The Riemann Hypothesis The Prime Number Theorem is finally proven (1896) Jacques Salomon Hadamard 1865 - 1963 Charles Jean Gustave Nicolas Baron de the Vall´ ee Poussin 1866 - 1962 Universit` a Roma Tre

  58. π ( x ) = # { p ≤ x s.t. p is prime } 26 The Riemann Hypothesis The Prime Number Theorem is finally proven (1896) Jacques Salomon Hadamard 1865 - 1963 Charles Jean Gustave Nicolas Baron de the Vall´ ee Poussin 1866 - 1962 ✞ ☎ � | π ( x ) − li( x ) | ≪ x exp( − a log x ) ∃ a > 0 ✝ ✆ Universit` a Roma Tre

  59. π ( x ) = # { p ≤ x s.t. p is prime } 27 The Riemann Hypothesis Euler Contribution Leonhard Euler (1707 - 1783) ∞ 1 � ζ ( s ) = n s has to do with prime numbers n =1 Universit` a Roma Tre

  60. π ( x ) = # { p ≤ x s.t. p is prime } 27 The Riemann Hypothesis Euler Contribution Leonhard Euler (1707 - 1783) � − 1 ∞ 1 � 1 − 1 � � ζ ( s ) = n s = p s n =1 p prime Universit` a Roma Tre

  61. π ( x ) = # { p ≤ x s.t. p is prime } 28 The Riemann Hypothesis The beautiful formula of Riemann Universit` a Roma Tre

  62. π ( x ) = # { p ≤ x s.t. p is prime } 28 The Riemann Hypothesis The beautiful formula of Riemann ✤ ✜ � � ∞ � ∞ � 1 2 − 1 + x − s +1 � e − n 2 πx � s s ( s − 1) + x dx 2 ∞ 1 1 � n =1 s ζ ( s ) = n s = π 2 � ∞ 2 − 1 du e − u u s n =1 ✣ ✢ u 0 Universit` a Roma Tre

  63. π ( x ) = # { p ≤ x s.t. p is prime } 28 The Riemann Hypothesis The beautiful formula of Riemann ✤ ✜ � � ∞ � ∞ � 1 2 − 1 + x − s +1 � e − n 2 πx � s s ( s − 1) + x dx 2 ∞ 1 1 � n =1 s ζ ( s ) = n s = π 2 � ∞ 2 − 1 du e − u u s n =1 ✣ ✢ u 0 Exercise To prove that, if σ, t ∈ R are such that � ∞ { x } σ  x σ +1 cos( t log x ) dx =  ( σ − 1) 2 + t 2   1   � ∞ { x } t    x σ +1 sin( t log x ) dx =  ( σ − 1) 2 + t 2  1 Then σ = 1 2 . (Here { x } denotes the fractional part of x ∈ R .) Universit` a Roma Tre

  64. π ( x ) = # { p ≤ x s.t. p is prime } 29 The Riemann Hypothesis Explicit distribution of prime numbers Universit` a Roma Tre

  65. π ( x ) = # { p ≤ x s.t. p is prime } 29 The Riemann Hypothesis Explicit distribution of prime numbers Theorem. (Rosser - Schoenfeld) if x ≥ 67 x x log x − 1 / 2 < π ( x ) < log x − 3 / 2 Universit` a Roma Tre

  66. π ( x ) = # { p ≤ x s.t. p is prime } 29 The Riemann Hypothesis Explicit distribution of prime numbers Theorem. (Rosser - Schoenfeld) if x ≥ 67 x x log x − 1 / 2 < π ( x ) < log x − 3 / 2 Therefore 10 100 10 100 log(10 100 ) − 1 / 2 < π (10 100 ) < log(10 100 ) − 3 / 2 Universit` a Roma Tre

Recommend


More recommend