the radiative return at and b meson factories
play

The Radiative Return at - and B -Meson Factories J.H. K UHN, TTP, - PowerPoint PPT Presentation

The Radiative Return at - and B -Meson Factories J.H. K UHN, TTP, KARLSRUHE I Basic Idea II Monte Carlo Generators: Status & Perspectives III Charge Asymmetry and Radiative -Decays IV Nucleon Form Factors at B-Factories Pion


  1. The Radiative Return at Φ - and B -Meson Factories J.H. K¨ UHN, TTP, KARLSRUHE I Basic Idea II Monte Carlo Generators: Status & Perspectives III Charge Asymmetry and Radiative Φ -Decays IV Nucleon Form Factors at B-Factories Pion and Kaon Form Factors at large Q 2 V and τ → νK − K 0 VI Conclusions (with H. Czy˙ z, A. Grzelinska, E. Nowak, G. Rodrigo) 1

  2. I BASIC IDEA photon radiated off the initial e + e − (ISR) reduces the effective energy of the collision dσ ( e + e − → hadrons + γ ) = H ( Q 2 , θ γ ) dσ ( e + e − → hadrons) ◮ measurement of R ( s ) over the full range of energies, from threshold up to √ s ◮ large luminosities of factories compensate α/π from photon radiation ◮ radiative corrections essential (NLO) ◮ advantage over energy scan (BES, CMD2, SND): systematics (e.g. normalization) only once High precision measurement of the hadronic cross-section at DA Φ NE, CLEO-C, B-factories The Radiative Return at Φ - and B -Meson Factories J.H. K¨ uhn 2

  3. DA Φ NE versus B-factories: configurations in the cms - frame 10 GeV 1 GeV γ γ + − e e + π − π very hard photon: clear kine- no natural kinematic separation ➪ cuts to control FSR versus matic separation between pho- ton and hadrons ISR ( two step process: e + e − → γ ρ ( → γππ ) ⇒ see below ) The Radiative Return at Φ - and B -Meson Factories J.H. K¨ uhn 3

  4. Rough estimates for rates: π + π − γ : E γ > 100 MeV √ s [ GeV ] L [ fb − 1 ] # events, θ min = 7 ◦ � 16 · 10 6 1.02 1.35 3.5 · 10 6 10.6 100 multi-hadron-events (R ≡ 2 ) √ s = 10 . 6 GeV Q 2 -interval [ GeV ] # events, θ min = 7 ◦ 9.9 · 10 5 [ 1 . 5 , 2 . 0 ] 7.9 · 10 5 [ 2 . 0 , 2 . 5 ] 6.6 · 10 5 [ 2 . 5 , 3 . 0 ] 5.8 · 10 5 [ 3 . 0 , 3 . 5 ] The Radiative Return at Φ - and B -Meson Factories J.H. K¨ uhn 4

  5. Lowest order e + e − → γ + had( Q 2 ) e + e − → had( Q 2 ) dσ � � � � = σ dQ 2 s 2 + Q 4 log( s/m 2 � � � � e ) − 1 , no angular cut s ( s − Q 2 ) × α πs s 2 + Q 4 − s − Q 2 � 1+cos θ min � s ( s − Q 2 ) log cos θ min s 1 − cos θ min � � dL = α ⇒ differential luminosity: Q 2 , s � � · · · L (at s ) πs dQ 2 The Radiative Return at Φ - and B -Meson Factories J.H. K¨ uhn 5

  6. Basic Ingredients for Pion Formfactor ◮ ISR pion form factor ➪ to be tested ◮ FSR radiation from point- like pions (probably overestimated) ◮ additional radiation: collinear (EVA MC) (Binner, JK, Melnikov) or NLO calculation (PHOKHARA MC) The Radiative Return at Φ - and B -Meson Factories J.H. K¨ uhn 6

  7. II MONTE CARLO GENERATORS P H OTONS FROM KARLSRUHE H ADRONICALLY R ADIATED References etc. → http://cern.ch/german.rodrigo/phokhara The Radiative Return at Φ - and B -Meson Factories J.H. K¨ uhn 7

  8. A PHOKHARA 2.0: π + π − , µ + µ − , 4 π • ISR at NLO: virtual corrections to one photon events and two photon emission at tree level γ γ γ 2 2 γ + + • FSR at LO: π + π − , µ + µ − • tagged or untagged photons • modular structure The Radiative Return at Φ - and B -Meson Factories J.H. K¨ uhn 8

  9. � PHOKHARA 3.0 ◮ specifically developed for π + π − (plus photons) ◮ allows for simultaneous emission of photons from initial and final state, including virtual corrections (interference neglected). ⇒ dominated by “two step process”: e + e − → γ ρ ( → γ ππ ) ⇒ importance of ππγ as input for a µ The Radiative Return at Φ - and B -Meson Factories J.H. K¨ uhn 9

  10. ★ ★ ✏ ★ ✕ ✏ ✩ ✘ ✏ ✙ ✩ ✏ ✩ ✕ ✚ ✎ ✓ ✒ ✌ ✒ ✏ ✍ ✑ ✏ ✏ ★ ✏ ✏ ✏ ★ ✏ ✏ ✓ ✏ ★ ✒ ✏ ✓ ★ ✏ ✗ ✛ ✜ ✏ ✁ ✁ � ✥ � ✧ ✁ ★ � ✁ ★ ★ ★ ★ ★ ★ ✩ ★ ✦ ✥ ✢ ☛ ✌ ✣ ★ ✛ ☞ ✣ ☞ ✠ ✟ � ☛ ✡ ✠ ✜ ✟ ✤ ✤ ✞ ✏ A Large effect for Q 2 < m 2 ρ eliminated by suitable cuts on π + π − configuration (suppress 2 γ events ) e e ( ) e e ( ) 1 1 0 14 0 05 a c : 15 ( ISRNLO ) p p ( IFSLO ) 0 04 0 12 dQ 2 dQ 2 ✔✖✕ 50 130 s = 1.02 GeV 0 03 d 0 ✂✝✆ 180 0 1 d no M tr cut ( IFSNLO ) ( IFSNLO ) ✂☎✄ 0 180 0 02 dQ 2 0 08 dQ 2 0 01 d 0 06 d 0 0 04 0 01 M tr cut 0 02 0 02 0 0 03 0 02 0 04 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 1 Q 2 ( GeV 2 ) Q 2 ( GeV 2 ) or measure photon The Radiative Return at Φ - and B -Meson Factories J.H. K¨ uhn 10

  11. Experimental Perspectives KLOE pion form factor BABAR, BELLE higher Q 2 available ⇒ measurement of R( Q 2 ) from threshold up to at least 5 GeV. Examples: ◮ ππ 4 π ± ◮ K K ππ ◮ K K K K ◮ The Radiative Return at Φ - and B -Meson Factories J.H. K¨ uhn 11

  12. PHOKHARA 4.0 • µ + µ − γ with FSR at NLO • vacuum polarisation can be switched on • nucleon pair production included The Radiative Return at Φ - and B -Meson Factories J.H. K¨ uhn 12

  13. III Charge Asymmetries and Radiative Φ -Decays (H. Czy˙ z, A. Grzelinska, JK, hep-ph/0412239) ➪ interference odd interference: under π + ↔ π − ➪ asymmetric differential � distribution: interf. = 0 A ( θ ) = N π + ( θ ) − N π − ( θ ) N π + ( θ ) + N π − ( θ ) additional contribution on top of Φ -resonance (KLOE !) e + e − → Φ → γ f 0,2 → π + π − � � interference ! The Radiative Return at Φ - and B -Meson Factories J.H. K¨ uhn 13

  14. A Significant influence of scalar resonances on charge asymmetry e + e − → π + π − γ f0 KK model 0 . 5 f0 ”no str.” α φ = π f0 ”no str.” α φ = π 2 √ s = m φ 0 . 4 no f0 N ( θ π + > 90 ◦ ) − N ( θ π + < 90 ◦ ) N ( θ π + > 90 ◦ ) + N ( θ π + < 90 ◦ ) 20 ◦ < θ π ± < 160 ◦ 0 . 3 45 ◦ < θ γ < 135 ◦ 0 . 2 0 . 1 0 − 0 . 1 − 0 . 2 − 0 . 3 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 � Q 2 ( GeV ) Interference between ISR and FSR ⇒ amplitude for Φ → γππ The Radiative Return at Φ - and B -Meson Factories J.H. K¨ uhn 14

  15. IV NUCLEON FORM FACTORS (with Czy˙ z, Nowak, Rodrigo, hep-ph/0403062) Q 2 � 4 m 2 N accessible at B-factories ⇒ study e + e − → γ N ¯ N (with N = p or n ) hadronic current: � 1 ( Q 2 ) γ µ − F N 2 ( Q 2 ) � F N J µ = − ie · ¯ u ( q 2 ) [ γ µ , / Q ] v ( q 1 ) , 4 m N Q = q 1 + q 2 , q = ( q 1 − q 2 ) / 2 or G E = F 1 + Q 2 G M = F 1 + F 2 , 4 m 2 F 2 The Radiative Return at Φ - and B -Meson Factories J.H. K¨ uhn 15

  16. Result: 2 s L µν H µν d Φ 2 ( p 1 + p 2 ; Q, k ) d Φ 2 ( Q ; q 1 , q 2 ) dQ 2 dσ = 1 2 π , L µν H µν = (4 πα ) 3 M | 2 − 1 �� � | G N τ | G N E | 2 Q 2 � 1 �� ( p 1 · q ) 2 + ( p 2 · q ) 2 32 s + 1 � × β 2 s 2 N ( s − Q 2 ) y 1 y 2 ��� 1 � ( s 2 + Q 4 ) M | 2 + 1 + 1 � �� | G N τ | G N E | 2 + 2 s ( s − Q 2 ) − 2 , y 1 y 2 where y 1 , 2 = s − Q 2 Q 2 N = 1 − 4 m 2 β 2 N (1 ∓ cos θ γ ) , τ = , 4 m 2 Q 2 2 s N The Radiative Return at Φ - and B -Meson Factories J.H. K¨ uhn 16

  17. A Separation of | G M | 2 and | G E | 2 through angular distribution: (1 + cos 2 θ γ ) L µν H µν = (4 πα ) 3 (1 − cos 2 θ γ ) Q 2 θ ) + 1 � � M | 2 (1 + cos 2 ˆ E | 2 sin 2 ˆ | G N τ | G N × 4 θ ˆ θ = angle of nucleon with respect to γ -direction in hadronic rest frame � � valid for s/Q 2 ≪ 1 , corrections and “optimal frame” → hep-ph/0403062 Similarity to e + e − → N ¯ N : d Ω = α 2 β N dσ M | 2 (1 + cos 2 θ ) + 1 � � E | 2 sin 2 θ | G N τ | G N 4 Q 2 The Radiative Return at Φ - and B -Meson Factories J.H. K¨ uhn 17

  18. ✤ ✤ ✣ ✤ ✥ ✤ ✣ ✥ ✢ ✜ ✤ ✗ ✛ ✖ ✘ ✗ ✚ ✗ ✙ ✤ ✤ ✗ ✣ ✣ ★ ✧ ✤ ✣ ✧ ✦ ✤ ✦ ✦ ✤ ✤ ✣ ✤ ✥ ✤ ✣ ✧ ✖ ✘ ✖ ✞ ☞ ✡ ✠ ✟ ☎ ✆ ✝ ✍ ☎ ✆ ☎ ✄ ✂ ✁ � ✌ ☛ ✎ ☛ ✕ ✔ ✓ ✍ ✌ ✎ ✠ ✒ A Implementation on basis of model for form factor: ✎✑✏ ✎✑✏ ✎✑✏ ✎✑✏ ✦✑✣ ✢✑✣ (GeV ) (GeV ) J.H. K¨ uhn The Radiative Return at Φ - and B -Meson Factories 18

  19. ✵ ✥ ✴ ✷ ✸ ❍ ✪ ✦ ✫ ✫ ✬ ✭ ✴ ✬ ✜ ✥ ✶ ✥ ✫ ✜✳ ✫ ✬ ❏ ✲ ✮ ✬ ✢ ■ ✫ ✥ ✫ ✬ ✜✢ ✬ ✜ ✥ ● ✪ ❁ ✾ ✽ ✿ ❀ ❁ ❋ ❊ ✼ ❂ ❃ ❂ ❄ ❅ ❆ ❇ ✽ ✻ ✹ ✲ ✢ ✫ ✬ ✭ ✮ ✰ ✮ ★ ✬ ✜ ✥ ✢ ✫ ★ ✺ ✢ ✳ ❉ ✻ � ✁ ☎ ✆ ✞ ▼ ✟ ✞ ✠ ✟ ✡ ☛ ☞ ✌ ☞ ✜✢ ✝ ✜✢ ❖ ◗ ✻ ✜✢ P ✻ ✜✢ ✻ ✆ ✜✢ ◆ ✻ � ✁ ✂✄ ☎ ✍ ✎ ✥✦ ✞ ✑ ✘ ✕ ✝ ✘ ✕ ✘ ✘ ✕ ✗ ✘ ✙ ✚ ✛ ✵ ✕ ✂ ▲ ✞ ✏ ✻ ✑ ✒ ✝ ✓ ✔ ✗ ✜✢ ✑ ✸ ✝ ✥ ✞ ❑ ❈ A ✂✖✕ FENICE(98) FENICE(94) ✂✖✕ ✧✩★ FENICE(93) ✜✢✤✣ DM2(90) ✂✖✕ DM2(83) DM1(79) ADONE(73) ✂✖✕ ✭✯✮✱✰ A : ✭✯✴ B : (nb) At least one photon satisfies: A B ✧✩★ (GeV ) (GeV ) e + e − → p ¯ e + e − → p ¯ p p γ implementation in PHOKHARA J.H. K¨ uhn The Radiative Return at Φ - and B -Meson Factories 19

Recommend


More recommend