the problem of equivalence of different gauges in
play

The problem of equivalence of different gauges in external current - PowerPoint PPT Presentation

Gauge Freedom and Canonical Quantization Different Gauges in QED (In-)Equivalence of gauges The problem of equivalence of different gauges in external current QED Benedikt Wegener Foundations and Constructive Aspects of QFT Bergische


  1. Gauge Freedom and Canonical Quantization Different Gauges in QED (In-)Equivalence of gauges The problem of equivalence of different gauges in external current QED Benedikt Wegener Foundations and Constructive Aspects of QFT Bergische Universit¨ at Wuppertal June 22, 2018 1 / 22

  2. Motivation and Strategy Motivation: In classical ED: change of gauge has no influence on the experimental results. In QED this issue is more controversial.

  3. Motivation and Strategy Motivation: In classical ED: change of gauge has no influence on the experimental results. In QED this issue is more controversial. Strategy: i) Physics Part: Gauge Freedom 1 Canonical Quantization 2 Maxwell Fields in different Gauges 3 ii) Math Part: Equivalence of Observables in different gauges 1

  4. Gauge Freedom and Canonical Quantization Different Gauges in QED (In-)Equivalence of gauges Table of contents Gauge Freedom and Canonical Quantization 1 Gauge Freedom Canonical Quantization Different Gauges in QED 2 Gauge Freedom of Classical Electrodynamics Coulomb gauge Axial gauge (In-)Equivalence of gauges 3 Vanishing charge Non-vanishing charge 3 / 22

  5. Gauge Freedom and Canonical Quantization Gauge Freedom Different Gauges in QED Canonical Quantization (In-)Equivalence of gauges Singular Systems Configuration space M , Lagrange function L : T M → C Legendre trafo ⇒ Hamiltonian: H ( q , p ) = � v i p i − L ( q , p ) i ( q i , v i ) �→ ( q i , p i := ∂ L ρ L : T M → T ∗ M , ∂ v i ) 4 / 22

  6. Gauge Freedom and Canonical Quantization Gauge Freedom Different Gauges in QED Canonical Quantization (In-)Equivalence of gauges Singular Systems Configuration space M , Lagrange function L : T M → C Legendre trafo ⇒ Hamiltonian: H ( q , p ) = � v i p i − L ( q , p ) i ( q i , v i ) �→ ( q i , p i := ∂ L ρ L : T M → T ∗ M , ∂ v i ) Definition Lagrangian L is called singular if ρ L is not a local isomorphism: det( ∂ 2 L ∂ v i ∂ v j ) = 0 Problem : Hamiltonian depends linearly on some v a : H ( q i , p i , v a ) = ˜ H ( q i , p i ) − v a φ a ( q i , p i ) 4 / 22

  7. Gauge Freedom and Canonical Quantization Gauge Freedom Different Gauges in QED Canonical Quantization (In-)Equivalence of gauges Singular Systems ! e.o.m. ⇒ { H , v a } = 0 ⇒ φ a = 0 With M ab := { φ a , φ b } : = 0 ⇒ d ! ! dt φ b = { φ b , ˜ H } + v a M ab φ b = 0 (1) 5 / 22

  8. Gauge Freedom and Canonical Quantization Gauge Freedom Different Gauges in QED Canonical Quantization (In-)Equivalence of gauges Singular Systems ! e.o.m. ⇒ { H , v a } = 0 ⇒ φ a = 0 With M ab := { φ a , φ b } : = 0 ⇒ d ! ! dt φ b = { φ b , ˜ H } + v a M ab φ b = 0 (1) Two cases: H } � = 0, det ( M ) � = 0 ⇒ all v a are fixed by (1) { φ b , ˜ 1 H } = 0, some v a are fixed by (1) depending on rk ( M ) { φ b , ˜ 2 5 / 22

  9. Gauge Freedom and Canonical Quantization Gauge Freedom Different Gauges in QED Canonical Quantization (In-)Equivalence of gauges Singular Systems ! e.o.m. ⇒ { H , v a } = 0 ⇒ φ a = 0 With M ab := { φ a , φ b } : = 0 ⇒ d ! ! dt φ b = { φ b , ˜ H } + v a M ab φ b = 0 (1) Two cases: H } � = 0, det ( M ) � = 0 ⇒ all v a are fixed by (1) { φ b , ˜ 1 H } = 0, some v a are fixed by (1) depending on rk ( M ) { φ b , ˜ 2 Definition A constraint φ α is called first class if { φ α , φ i } = 0 for every constraint function φ i , otherwise second class. 5 / 22

  10. Gauge Freedom and Canonical Quantization Gauge Freedom Different Gauges in QED Canonical Quantization (In-)Equivalence of gauges Dirac Bracket Case 1: only 2 nd class constraints v a fixed: v a = − ( M − 1 ) ab { φ b , ˜ dt F = { F , ˜ H } ⇒ d H } D Definition Let F , G ∈ C ∞ ( M ). Their Dirac bracket is: { F , G } D := { F , G } − { F , φ a } ( M − 1 ) ab { φ b , G } D M phys ⊂ M with {· , ·}| M phys = {· , ·} D 6 / 22

  11. Gauge Freedom and Canonical Quantization Gauge Freedom Different Gauges in QED Canonical Quantization (In-)Equivalence of gauges Gauge Freedom Case 2: 1 st class constraints φ α generate gauge transformations: δ ǫ F = ǫ α { F , φ α } { gauge orbits } ∼ = M phys Gauge fixing= intersecting each gauge orbit once ⇔ external constraints → no 1 st class cons. ⇒ Dirac bracket 1 1 Graphic from H.Itoyama, The Birth of String Theory , Progress in Experimental and Theoretical Physics, 2016 7 / 22

  12. Gauge Freedom and Canonical Quantization Gauge Freedom Different Gauges in QED Canonical Quantization (In-)Equivalence of gauges Canonical Quantization Fix a Hilbert space H Any F ∈ C ∞ ( M phys ) mapped to a self adjoint operator ˆ F on H such that: { F , G } → 1 i � [ ˆ F , ˆ G ] 8 / 22

  13. Gauge Freedom and Canonical Quantization Gauge Freedom Different Gauges in QED Canonical Quantization (In-)Equivalence of gauges Canonical Quantization Fix a Hilbert space H Any F ∈ C ∞ ( M phys ) mapped to a self adjoint operator ˆ F on H such that: { F , G } → 1 i � [ ˆ F , ˆ G ] Problem : {· , ·} not compatible with constraints ⇒ Solution : { F , G } D → 1 i � [ ˆ F , ˆ G ] 8 / 22

  14. Gauge Freedom and Canonical Quantization Gauge Freedom Different Gauges in QED Canonical Quantization (In-)Equivalence of gauges Strategy of Canonical Quantization h : one-particle space, Bosonic Fock space: � E s ( h ⊗ n ) Γ s ( h ) = n ≥ 0 a ( f ) , a † ( f ) , f ∈ h : the usual annihilation and creation operators on Γ s 9 / 22

  15. Gauge Freedom and Canonical Quantization Gauge Freedom Different Gauges in QED Canonical Quantization (In-)Equivalence of gauges Strategy of Canonical Quantization h : one-particle space, Bosonic Fock space: � E s ( h ⊗ n ) Γ s ( h ) = n ≥ 0 a ( f ) , a † ( f ) , f ∈ h : the usual annihilation and creation operators on Γ s Choose H = Γ s ( h ) with h = L 2 ( R 3 ) ⊗ C 3 Find a classical representation of Dirac bracket in terms of a † a † m ( k ′ ) } D = − i δ nm δ (3) ( k − k ′ ) modes ˜ a n , ˜ n satisfying { ˜ a n ( k ) , ˜ a ( † ) → a ( † ) Quantization: ˜ n n 9 / 22

  16. Gauge Freedom and Canonical Quantization Gauge Freedom of Classical Electrodynamics Different Gauges in QED Coulomb gauge (In-)Equivalence of gauges Axial gauge Covariant Formulation of Maxwell Equations Vector field A ∈ Ω 1 ( Mink 4 ) and field strength tensor F µν = ∂ µ A ν − ∂ ν A µ � Current j ∈ S ( R 3 ) ⊗C 4 with charge Q = R 3 d 3 x j 0 ( x ) = � j 0 (0) Lagrange density: L = F µν F µν − j µ A µ δ L ⇒ π µ := δ∂ 0 A µ = F µ 0 = E µ ⇒ π 0 = F 00 = 0 → L is singular 10 / 22

  17. Gauge Freedom and Canonical Quantization Gauge Freedom of Classical Electrodynamics Different Gauges in QED Coulomb gauge (In-)Equivalence of gauges Axial gauge Gauge Freedom Two first class constraints π 0 = F 00 ≈ 0 ∇ · π + j 0 ≈ 0 (Gauss law) ⇒ two generators of gauge transformations: A 0 → A 0 + ξ A i → A i + ∂ i χ ⇒ Well knwon U (1) gauge freedom ⇒ 2 gauge conditions needed 11 / 22

  18. Gauge Freedom and Canonical Quantization Gauge Freedom of Classical Electrodynamics Different Gauges in QED Coulomb gauge (In-)Equivalence of gauges Axial gauge The Coulomb gauge Choose gauge conditions: (i) ∇ · A ≈ 0 , (ii) ∆ A 0 + j 0 ≈ 0 ⇒ Dirac bracket: � � δ ij − ∂ i ∂ j δ (3) ( x − y ) { A i ( x ) , π j ( y ) } D = ∆ 12 / 22

  19. Gauge Freedom and Canonical Quantization Gauge Freedom of Classical Electrodynamics Different Gauges in QED Coulomb gauge (In-)Equivalence of gauges Axial gauge The Coulomb gauge Choose gauge conditions: (i) ∇ · A ≈ 0 , (ii) ∆ A 0 + j 0 ≈ 0 ⇒ Dirac bracket: � � δ ij − ∂ i ∂ j δ (3) ( x − y ) { A i ( x ) , π j ( y ) } D = ∆ Let f ∈ S ( R 3 ) ⊗ R 3 , then: 1 2 P T (ˆ 1 2 P T (ˆ f )) + � k · ˆ f , � π C ( f ) = a (( ω f )) + a † (( ω 2 ) 2 ) j 0 � 2 � 2 � B C ( f ) = a ((2 ω ) − 1 1 curl ( f )) + a † ((2 ω ) curl ( f )) with P T : projection to h T := { g ∈ h ; k · ˆ g = 0 } 12 / 22

  20. Gauge Freedom and Canonical Quantization Gauge Freedom of Classical Electrodynamics Different Gauges in QED Coulomb gauge (In-)Equivalence of gauges Axial gauge The Axial gauge Choose gauge conditions (i) e · A ≈ 0 (ii) e · ( π − ∇ A 0 ) ≈ 0 ⇒ Dirac bracket: � � δ ij − e j ∂ i δ (3) ( x − y ) { A i ( x ) , π j ( y ) } D = e · ∇ Problem : e i ∂ j e ·∇ : S ( R 3 ) �→ L 2 ( R 3 ) 13 / 22

  21. Gauge Freedom and Canonical Quantization Gauge Freedom of Classical Electrodynamics Different Gauges in QED Coulomb gauge (In-)Equivalence of gauges Axial gauge Smearing of the Axial gauge Extend phase space to have n copies of A → extends Gauge freedom to U (1) × · · · × U (1) Axial gauge fixing for each A i with gauge vector e i ∈ R 3 Dirac bracket: � � n � � � δ ij − 1 e i , j δ (3) ( x − y ) { A i ( x ) , π j ( y ) } D = ∂ i n e · ∇ i =1 14 / 22

Recommend


More recommend