the other higgses at resonance in the lee wick extension
play

THE OTHER HIGGSES, AT RESONANCE, IN THE LEE- WICK EXTENSION OF THE - PowerPoint PPT Presentation

THE OTHER HIGGSES, AT RESONANCE, IN THE LEE- WICK EXTENSION OF THE STANDARD MODEL ARXIV:1108.3765, JHEP10 (2011) 145 (IN COLLABORATION WITH ROMAN ZWICKY) Dr. Terrance Figy The University of Manchester Birmingham Particle Physics Seminars 29


  1. THE OTHER HIGGSES, AT RESONANCE, IN THE LEE- WICK EXTENSION OF THE STANDARD MODEL ARXIV:1108.3765, JHEP10 (2011) 145 (IN COLLABORATION WITH ROMAN ZWICKY) Dr. Terrance Figy The University of Manchester Birmingham Particle Physics Seminars 29 Feb 2012

  2. OUTLINE • The Lee-Wick Standard Model • Higgs boson pair production • Top quark pair production • Conclusions

  3. LEE-WICK STANDARD MODEL (LWSM) B.Grinstein, D.O’Connel, M.B.Wise (2007) Based on ideas by Lee and Wick (1969,1970 )

  4. A TOY MODEL B. Grinstein, D. O’Connel, M.B. Wise (2007) (A) HD formalism: L hd = 1 1 φ ) 2 − 1 φ 2 − 1 φ∂ µ ˆ 2 M 2 ( ∂ 2 ˆ 2 m 2 ˆ 2 ∂ µ ˆ 3! g ˆ φ 3 , φ − Propagator: ˆ D ( p ) = i ( p 2 − p 4 /M 2 − m 2 ) − 1 2 poles: p 2 = m 2 , M 2 (B) AF formalism: ˆ φ = φ − ˜ φ L = 1 2 ∂ µ φ∂ µ φ − 1 φ + 1 φ 2 − 1 φ ) 2 − 1 φ∂ µ ˜ 2 M 2 ˜ 2 ∂ µ ˜ 2 m 2 ( φ − ˜ 3! g ( φ − ˜ φ ) 3 . Wrong sign kinetic and mass term M. The two formulations are equivalent. Use EoM.

  5. A TOY MODEL B. Grinstein, D. O’Connel, M.B. Wise (2007) ˜ φ φ φ φ φ φ + i − i ˜ D ( p ) = ; D ( p ) = p 2 − m 2 p 2 − M 2 d 4 p d 4 p i i � � Σ (0) = ig p 2 − m 2 − ig (2 π ) 4 (2 π ) 4 p 2 − M 2 d 4 p i ( m 2 − M 2 ) � = ig (2 π ) 4 ( p 2 − m 2 )( p 2 − M 2 ) Quadratic divergence is cancelled leading to a logarithmic divergence.

  6. A TOY MODEL B. Grinstein, D. O’Connel, M.B. Wise (2007) − i − i − i − i Σ ( p 2 ) � � φ ( p ) = p 2 − M 2 + p 2 − M 2 + . . . D ˜ p 2 − M 2 − i = p 2 − M 2 + Σ ( p 2 ) . � g 2 1 − 4 m 2 − i φ ( p ) = Γ = D ˜ p 2 − M 2 − iM Γ , M 2 . 32 π M A LW resonance has a probability of decaying in the interval . Γ dt − dt Is this a problem? Shall we debate this issue further or proceed?

  7. LWSM: SUMMARY • For each SM field add a higher derivative (HD) term. • Auxiliary fields (AF) can be introduced to cast the theory in terms of interactions with mass dimension no greater than 4. • The AFs are interpreted as LW partner states and have the wrong-sign propagator (aka Pauli-Villars regulators). • The LWSM solves the hierarchy problem: the extra minus sign in the loop diagrams come from the LW field propagators. No need for opposite spin statistics! • Unitarity is preserved, provided that the LW fields do no appear as asymptotic states in the S-matrix. • Causality is preserved at the the macroscopic level (where we live). However, there can be violations of causality at the microscopic level.

  8. References 1 - The Lee-Wick standard model - Grinstein, Benjamin et al. Phys.Rev. D77 (2008) 025012 . arXiv:0704.1845 [hep-ph] . CALT-68-2643, UCSD-PTH-07-04 2 - Negative Metric and the Unitarity of the S Matrix - Lee, T.D. et al. Nucl.Phys. B9 (1969) 209-243 3 - Finite Theory of Quantum Electrodynamics - Lee, T.D. et al. Phys.Rev. D2 (1970) 1033-1048 4 - Causality as an emergent macroscopic phenomenon: The Lee-Wick O(N) model - Grinstein, Benjamin et al. Phys.Rev. D79 (2009) 105019 . arXiv:0805.2156 [hep- th] . CALT-68-2684, UCSD-PTH-08-03 5 - A non-analytic S matrix - Cutkosky, R.E. et al. Nucl.Phys. B12 (1969) 281-300 6 - Vertex Displacements for Acausal Particles: Testing the Lee-Wick Standard Model at the LHC - Alvarez, Ezequiel et al. JHEP 0910 (2009) 023 . arXiv:0908.2446 [hep-ph] . UDEM-GPP-TH-09-183, IFIBA-TH-09-001 7 - Lee-wick Indefinite Metric Quantization: A Functional Integral Approach - Boulware, David G. et al. Nucl.Phys. B233 (1984) 1 . DOE/ER/40048-12 P3 8 - Non-perturbative quantization of phantom and ghost theories: Relating definite and indefinite representations - van Tonder, Andre Int.J.Mod.Phys. A22 (2007) 2563-2608 . hep-th/0610185 9 - Unitarity, Lorentz invariance and causality in Lee-Wick theories: An Asymptotically safe completion of QED - van Tonder, Andre . arXiv:0810.1928 [hep-th] 10 - Lee-Wick Theories at High Temperature - Fornal, Bartosz et al. Phys.Lett. B674 (2009) 330-335 . arXiv:0902.1585 [hep-th] . CALT-68-2720, UCSD-PTH-09-02 11 - Massive vector scattering in Lee-Wick gauge theory - Grinstein, Benjamin et al. Phys.Rev. D77 (2008) 065010 . arXiv:0710.5528 [hep-ph] . CALT-68-2662, UCSD- PTH-07-10 12 - Neutrino masses in the Lee-Wick standard model - Espinosa, Jose Ramon et al. Phys.Rev. D77 (2008) 085002 . arXiv:0705.1188 [hep-ph] . CALT-68-2647, IFT- UAM-CSIC-07-21, UCSD-PTH-07-05 13 - One-Loop Renormalization of Lee-Wick Gauge Theory - Grinstein, Benjamin et al. Phys.Rev. D78 (2008) 105005 . arXiv:0801.4034 [hep-ph] . UCSD-PTH-07-11 14 - Ultraviolet Properties of the Higgs Sector in the Lee-Wick Standard Model - Espinosa, Jose R. et al. Phys.Rev. D83 (2011) 075019 . arXiv:1101.5538 [hep-ph] 15 - A Higher-Derivative Lee-Wick Standard Model - Carone, Christopher D. et al. JHEP 0901 (2009) 043 . arXiv:0811.4150 [hep-ph] 16 - Higher-Derivative Lee-Wick Unification - Carone, Christopher D. Phys.Lett. B677 (2009) 306-310 . arXiv:0904.2359 [hep-ph] 17 - No Lee-Wick Fields out of Gravity - Rodigast, Andreas et al. Phys.Rev. D79 (2009) 125017 . arXiv:0903.3851 [hep-ph] . HU-EP-09-13 18 - A Nonsingular Cosmology with a Scale-Invariant Spectrum of Cosmological Perturbations from Lee-Wick Theory - Cai, Yi-Fu et al. Phys.Rev. D80 (2009) 023511 . arXiv:0810.4677 [hep-th] 19 - Searching for Lee-Wick gauge bosons at the LHC - Rizzo, Thomas G. JHEP 0706 (2007) 070 . arXiv:0704.3458 [hep-ph] . SLAC-PUB-12481 20 - Unique Identification of Lee-Wick Gauge Bosons at Linear Colliders - Rizzo, Thomas G. JHEP 0801 (2008) 042 . arXiv:0712.1791 [hep-ph] . SLAC-PUB-13039 21 - Flavor Changing Neutral Currents in the Lee-Wick Standard Model - Dulaney, Timothy R. et al. Phys.Lett. B658 (2008) 230-235 . arXiv:0708.0567 [hep-ph] . CALT-68-2656 22 - Electroweak Precision Data and the Lee-Wick Standard Model - Underwood, Thomas E.J. et al. Phys.Rev. D79 (2009) 035016 . arXiv:0805.3296 [hep-ph] . IPPP-08-21, DCPT-08-42 23 - Custodial Isospin Violation in the Lee-Wick Standard Model - Chivukula, R.Sekhar et al. Phys.Rev. D81 (2010) 095015 . arXiv:1002.0343 [hep-ph] . MSUHEP-100201 24 - The Process gg ---> h(0) ---> gamma gamma in the Lee-Wick standard model - Krauss, F. et al. Phys.Rev. D77 (2008) 015012 . arXiv:0709.4054 [hep-ph] . IPPP-07-49, DCPT-07-98 25 - Constraints on the Lee-Wick Higgs Sector - Carone, Christopher D. et al. Phys.Rev. D80 (2009) 055020 . arXiv:0908.0342 [hep-ph] 26 - Higgs ---> Gamma Gamma beyond the Standard Model - Cacciapaglia, Giacomo et al. JHEP 0906 (2009) 054 . arXiv:0901.0927 [hep-ph] . LYCEN-2008-13 27 - Collider Bounds on Lee-Wick Higgs Bosons - Alvarez, Ezequiel et al. Phys.Rev. D83 (2011) 115024 . arXiv:1104.3496 [hep-ph] . ZU-TH-06-11

  9. LWSM Higgs Sector (AF formalism) D µ ˜ H † ˜ L = ( ˆ D µ H ) † ( ˆ D µ H ) � ( ˆ D µ ˜ H ) † ( ˆ H ˜ H � V ( H � ˜ H ) + M 2 H ) , L µ T a + g 2 W a µ T a + g 1 B µ Y h A µ = gA a where ˆ D µ = ∂ µ + i ( A µ + ˜ A µ ) w ˜ gauge the two doublets are p p H > = H > = ˜ ⇥ ˜ h + , (˜ ⇥ ⇤ ⇤ 0 , ( v + h 0 ) / 2 , h 0 + i ˜ p 0 ) / 2 h ˜ h h 0 i = v , h 0 i = 0 . h 0 ) 2 + M 2 L mass = � λ 4 v 2 ( h 0 � ˜ 2 (˜ h 0 ˜ p 0 + 2˜ h + ˜ H h 0 + ˜ p 0 ˜ h � ) . mixing between the Higgs scalar and its LW–partner. Th

  10. LWSM Higgs Sector ! ! ! h cosh φ h sinh φ h h phys Symplectic rotation: = ˜ ˜ h sinh φ h cosh φ h h phys Mass eigenvalues: ˜ h 0 h 0 p 0 ˜ h ± CP even even odd none m 2 q q ⇣ ⌘ ⇣ ⌘ 1 1 1 � 2 v 2 λ /M 2 1 � 2 v 2 λ /M 2 phys 1 � 1 + 1 1 M 2 H H 2 2 H

  11. LWSM Higgs Sector Mixing angle: 2 m 2 r h 0 ≡ m h 0 , phys λ v 2 = h 0 , phys h 0 ) , , (1 + r 2 m ˜ h 0 , phys 1 s H = cosh φ h = h 0 ) 1 / 2 , (1 − r 4 1 + r 2 h 0 s H � ˜ H = cosh φ h − sinh φ h = h 0 ) 1 / 2 . (1 − r 4

  12. LWSM Yukawa Interactions (in auxiliary field formalism) L = Ψ t i η 3 ˆ D Ψ t − Ψ t R M t η 3 Ψ t L η 3 M † Ψ t L − Ψ t / R , L , ˜ t R , ˜ Ψ t > Ψ t > L = ( T L , ˜ t 0 R = ( t R , ˜ T 0 T L ) , R ) SU(2) doublet: g. Q L = ( T L , B L ) > s which in turn form 0 1 0 1 m t 0 − m t 1 0 0 M t η 3 = A , η 3 = − m t − M u m t 0 − 1 0 B C B C @ @ A 0 0 − M Q 0 0 − 1

  13. LWSM Diagonalization of mass matrices Ψ L ( R ) , phys = η 3 S † M t, phys η 3 = S † L ( R ) η 3 Ψ L ( R ) , R M t η 3 S L , S L η 3 S † S R η 3 S † L = η 3 and R = η 3 Higgs-quark vertices L = − 1 − 1 ⇣ ⌘ ⇣ ⌘ v ( h 0 − ˜ L g † L g † R g t Ψ t t Ψ t R g t Ψ t t Ψ t Ψ t L + Ψ t Ψ t L − Ψ t h 0 ) v ( − i ˜ p 0 ) R R 0 1 m t 0 − m t g t, phys = S † g t = A , R g t S L − m t 0 m t B C @ 0 0 0

  14. LWSM LW gauge bosons are massive and mix: 1 B µ ν + W µ ν W µ ν − ˜ B µ ν B µ ν − ˜ � W µ ν � B µ ν ˜ W µ ν ˜ L 2 g = − 2Tr a ) + g 2 2 v 2 1 2 ˜ B µ + M 2 2 ˜ B µ ˜ µ ˜ ( W 1 , 2 + ˜ W 1 , 2 µ ) 2 W a W µ 2( M 1 − µ 8 v 2 B µ + g 2 W 3 W 3 µ ) 2 8 ( g 1 B µ + g 1 ˜ µ + g 2 ˜ + Gauge interactions: [ g 1 ¯ ψ ( � B + � ˜ B ) ψ + g 2 ¯ ψ ( � W + � ˜ � L int = W ) ψ ] − ψ = qL,uR,dR g 1 ¯ ψ + g 2 ¯ � � ψ ( � B + � ˜ ˜ B )˜ ψ ( � W + � ˜ ˜ W ) ˜ � + ψ . ψ = q,u,d

  15. LWSM Couplings to gauges bosons and fermions E. Alvarez, E. Coluccio, J.Zurita: arXiv 1004.3496 t F ˜ 1 / 2 ( β t P σ ( gg → ˜ 1 + r 2 g ˜ P ) P ) Pt ¯ | 2 , ˜ g h 0 f ¯ f = − g ˜ f = cosh θ − sinh θ = 1 − r 4 , g ˜ f = − 1 . g 2 √ Pgg = σ SM ( gg → H ) = | h 0 f ¯ Pf ¯ ˜ F 1 / 2 ( β t P ) ˜

Recommend


More recommend