the nash problem
play

The Nash problem Alvin Sipraga 28 August 2015 Overview 1. - PowerPoint PPT Presentation

The Nash problem Alvin Sipraga 28 August 2015 Overview 1. resolution of singularities 2. essential divisors 3. arc spaces components 4. Nash map problem 5. solution for toric varieties Overview arc spaces


  1. The Nash problem Alvin ˇ Sipraga 28 August 2015

  2. Overview 1. resolution of singularities 2. essential divisors 3. arc spaces  components   4. Nash map  problem  5. solution for toric varieties

  3. Overview arc spaces resolution of singularities N Nash components essential divisors Nash map John F. Nash, Jr., Arc structure of singularities , Duke Math. J. 81 (1995)

  4. Resolution of singularities X — singular variety over an algebraically closed field k Idea ◮ “parametrise” the variety X with a smooth variety Y Problems ◮ existence (char X = 0, surfaces, toric varieties) ◮ no obvious choice Approach ◮ classification ◮ minimal resolutions

  5. Essential divisors f : Y → X — resolution of singularities of X Definition ◮ prime divisor on Y — closed subvariety of Y of codimension 1 ◮ exceptional divisor of f — prime divisor E on Y such that f ( E ) is of codimension ≥ 2

  6. Essential divisors f : Y → X — resolution of singularities of X Definition ◮ prime divisor on Y — closed subvariety of Y of codimension 1 ◮ exceptional divisor of f — prime divisor E on Y such that f ( E ) is of codimension ≥ 2 Definition ◮ exceptional divisor over X — equivalence class of exceptional divisors of all resolutions of X ◮ essential divisors over Y — exceptional divisors over Y corresponding to irreducible components of f − 1 (Sing X ) for every resolution f : Y → X

  7. Essential divisors { prime divisors on Y } ⊆ ∼ { exceptional divisors of f } { exceptional divisors over X } ⊆ { essential divisors over X } center Y ∼ = { essential components over Y }

  8. Essential divisors { prime divisors on Y } ⊆ ∼ { exceptional divisors of f } { exceptional divisors over X } ⊆ { essential divisors over X } center Y ∼ = { essential components over Y }

  9. Essential divisors { prime divisors on Y } ⊆ ∼ { exceptional divisors of f } { exceptional divisors over X } ⊆ { essential divisors over X } center Y ∼ = { essential components over Y }

  10. Arc spaces X — scheme of finite type over an algebraically closed field k K — field extension of k Definition ◮ arc on X — morphism of the form Spec K [[ t ]] → X ◮ arc space of X — scheme X ∞ whose K -valued points correspond to arcs on X

  11. Arc spaces Proposition If f : Y → X is a resolution, then f ∞ induces a bijection Y ∞ \ ( f − 1 (Sing X )) ∞ ∼ = X ∞ \ (Sing X ) ∞ . Proposition If X is a smooth scheme and Z ⊆ X is an irreducible subscheme, then π − 1 X ( Z ) is irreducible.

  12. Nash components X — singular variety Definition ◮ Nash component with respect to X — irreducible component of π − 1 X (Sing X ) containing at least one arc α such that α ( η ) / ∈ Sing X

  13. Nash map f : Y → X — arbitrary resolution of singularities { C i } i ∈I — Nash components (with respect to X ) j =1 — irreducible components of f − 1 (Sing X ) { E j } m

  14. Nash map f : Y → X — arbitrary resolution of singularities { C i } i ∈I — Nash components (with respect to X ) j =1 — irreducible components of f − 1 (Sing X ) { E j } m N : { Nash components } → { irred. components of f − 1 (Sing X ) } Rule N ( C i ) = E j means f ∞ maps the generic point of π − 1 Y ( E j ) to the generic point of C i .

  15. Nash map f : Y → X — arbitrary resolution of singularities { C i } i ∈I — Nash components (with respect to X ) j =1 — irreducible components of f − 1 (Sing X ) { E j } m N : { Nash components } → { irred. components of f − 1 (Sing X ) } Rule N ( C i ) = E j means f ∞ maps the generic point of π − 1 Y ( E j ) to the generic point of C i . Theorem (Nash) The map N is injective onto the set of essential components over Y .

  16. Nash problem Is the Nash map N bijective?

  17. Nash problem Some answers to the problem:

  18. Nash problem Some answers to the problem: ◮ 2003 — Ishii–Koll´ ar ◮ toric varieties — yes ◮ dimension ≥ 4 — no

  19. Nash problem Some answers to the problem: ◮ 2003 — Ishii–Koll´ ar ◮ toric varieties — yes ◮ dimension ≥ 4 — no ◮ 2012 — de Bobadilla–Pe Pereira ◮ surfaces — yes

  20. Nash problem Some answers to the problem: ◮ 2003 — Ishii–Koll´ ar ◮ toric varieties — yes ◮ dimension ≥ 4 — no ◮ 2012 — de Bobadilla–Pe Pereira ◮ surfaces — yes ◮ 2013 — de Fernex ◮ dimension ≥ 3 — no

  21. The Nash problem for toric varieties Shihoko Ishii and J´ anos Koll´ ar, The Nash problem on arc families of singularities , Duke Math. J. 120 (2003) N◦F v � � � � minimal Nash components F elements in S with respect to X G N   toric divisorially � � essential divisors   essential divisors over X over X   D v G

  22. Example toric variety z (1 , 1 , 3) (0 , 1 , 0) y (1 , 0 , 0) x

  23. Example toric variety z (1 , 1 , 3) (0 , 1 , 0) y (1 , 0 , 0) x

  24. Example toric variety z (1 , 1 , 3) (0 , 1 , 0) y (1 , 0 , 0) x

  25. Example toric variety z (1 , 1 , 3) (0 , 1 , 0) y (1 , 0 , 0) x

  26. Example toric variety z (1 , 1 , 3) (0 , 1 , 0) y (1 , 0 , 0) x

  27. Example toric variety z (1 , 1 , 3) (0 , 1 , 0) y (1 , 0 , 0) x

  28. Example toric variety z (1 , 1 , 3) (0 , 1 , 0) y (1 , 0 , 0) x

  29. Example toric variety z (1 , 1 , 3) (0 , 1 , 0) y (1 , 0 , 0) x

  30. Example toric variety z (1 , 1 , 3) (0 , 1 , 0) y (1 , 0 , 0) x

  31. Example toric variety z (1 , 1 , 3) (0 , 1 , 0) y (1 , 0 , 0) x

  32. Example toric variety z (1 , 1 , 3) (0 , 1 , 0) y (1 , 0 , 0) x

  33. Example toric variety z (1 , 1 , 3) (0 , 1 , 0) y (1 , 0 , 0) x

Recommend


More recommend