The Mobilization of The Mobilization of Materials by Human and Materials by Human and Natural Activities Natural Activities 2.83/2.813 T. G. Gutowski
Materials Focus 1. Global Cycles; Stocks and Flows • carbon, rock, water, nitrogen, 2. Klee and Graedel Paper • anthropogenic Vs natural “mobilization” 3. Toxic Chemicals • EPA, and CDC 4. Total Materials Flows for U.S. • DPO and TDO 2
Stocks and Flows M m m & & in out (stock) M ( m m ) dt & & � = � � (addition to stock) in out 3
Steady State M m m & & in out (stock) � = M “Residence Time” & m 4
Residence Times • CO 2 (atmosphere) ~10 years • Nitrogen (atmosphere) 400 million years • Sulfur dioxide (atm) hours to weeks • Sodium (ocean) 48 million years • Iron (ocean) 100 years 5 Press and Siever
“Simple” Natural and Anthropogenic Cycles Stock or Reservoir A Stock or Stock or Reservoir B Reservoir C 6
Hutton’s Rock Cycle 7 Ref. Press and Siever
hydrological cycle 8 http://www.env.leeds.ac.uk/envi2150/oldnotes/lecture3/lecture3.html
Cycles Number of two way "conversations" = n(n-1) 2 Stock or Reservoir A Stock or Stock or Reservoir B Reservoir C 9
The Carbon Cycle 10
CO2 levels over last 1000 years Smil 2001 11
Nitrogen Cycle Stocks Stores in Atmosphere: ≈ 4 Et N Stores in Soil: ≈ 95 Gt N Flows Haber-Bosch Flow: ≈ 100 Mt N/yr Natural Nitrogen Fixing Flow is of the same order as the anthropogenic flow Flow to Plants (NPP), Klee & Graedel estimate 5.6 Gt N 12
Hypoxic Zones Hypoxia can cause fish to leave the area and can cause stress or death to bottom dwelling organisms that can’t move out of the hypoxic zone. Hypoxia is believed to be caused primarily by excess nutrients delivered from the Mississippi River in combination with seasonal stratification of Gulf waters. Excess nutrients promote algal and attendant zooplankton growth. The associated organic matter sinks to the bottom where it decomposes, 13 consuming available oxygen. Ref USGS, WRI
Techno-sphere & Ecosphere Models Consider the extraction of minerals from the ecosphere: Techno Δ M ≤ 0 -sphere ecosphere M ( m m ) dt & & � = � � (addition to stock) in out 14
Example: fossil fuels renewal Carbon used in 2005 was 7.5 Gt According to Smil it takes Approximately 7000 times the Phytomass to produce one unit of fossil fuel. Therefore we need 7.5 X 7000 GtC each year Techno -sphere Estimates of planetary NPP are about 105GtC ecosphere We need approximately 500 times todays NPP to satisfy our fossil fuel needs. See Smil, Vaclav, Energy in Nature And Society MIT Press 2008 p 73 15
Consider An alternate View: The Biosphere For our purposes, approximately closed to materials, but with heat and work interactions. Now Δ M = 0 16
How you construct the model will effect your answer • Ecosphere/technosphere model can focus on exchanges and efficiencies • Biosphere model can focus on degradation of quality and renewables 17
Klee & Graedel look at the mobilization (fluxes) of the elements • Natural flows • Anthropogenic flow – weathering and – mining erosion – fossil fuels – sea spray – primary plant – biomass burning productivity 18
Flux Categories 1. NPP plant uptake 2. Sea Spray aerosols 3. Erosion crustal weathering 4. Fossil Fuel Burning to air 5. Biomass Burning to air 6. Mining from reservoir 19
Study of 77 of the 92 naturally occurring elements Results for Magnesium Klee & Graedel 2004 20
54/77 => 70% Dominated & Perturbed 1A VIIIA 1 2 H He IIA IIIA IVA VA VIA VIIA 4 5 6 7 8 9 10 3 Be B C N O F Ne Li 11 12 13 14 15 16 17 18 Na Mg Al Si P S Cl Ar IIB IVB VB VIB VIIB VIIIB IB IIB 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd ln Sn Sb Te I Xe 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Po At Rn 87 88 89 Fr Ra Ac 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 90 91 92 Th Pa U Dominat ed Pert urbed Unpert urbed Undet ermined (>50% of Mobilizat ion) (15-50% of Mobilizat ion) (<15% of Mobilizat ion) 21
This is a first estimate • “eat my dust” • preliminary study • ignores pathways, exposure, sensitivity • doesn’t differentiate between the elements • more study needed • but this doesn’t look good (potential disruptions) 22
Methodology • Estimated mobilization of total mass of major flux category • Estimated elemental composition for each flux category 23
Quantities Mobilized from Klee and Graedel Category Mass/yr Mass/yr Coal 4,741 Tg/yr = 4.7 Gt/yr Oil 3,268 Tg/yr = 3.3 Gt/yr Biomass burning 8,600 Tg/yr = 8.6 Gt/yr Erosion to rivers 1,500 Tg/yr = 1.5 Gt/yr Sea spray 3,800 Tg/yr = 3.8 Gt/yr NPP 224,500 Tg/yr = 224.5 Gt/yr 24
Composition Average Average Average Concentration Average Concentration in in Average Concentration Concentration in Coal Concentration in in Dry Dry Plant Matter in Petroleum in g/Mg • in Seawater in Seawater in in g/Mg g/Mg ‡ Element in in g/Mg g/Mg * Crust Crust in g/Mg † g/Mg g/Mg § 0.003 h 2 He -- -- 0.00001 -- 3 Li 20 -- 22 0.2 -- 0.0004 d 4 Be 2.0 3.1 -- 0.2 e 5 B 50 17 4.5 58 890000 a 855000 f 478000 i 6 C 3240 28 5850 a 10500 f 7 N 83 150 25000 9 F 150 -- 611 1.3 -- 400 b 11 Na 12 25670 10770 1100 700 b 0.1 d 12 Mg 13510 1290 6250 11000 b 0.5 d 500 j 13 Al 77440 0.002 14 Si -- -- 303480 2.2 -- 15 P 150 -- 665 0.1 2250 13500 a 10300 f 16 S 953 905 2000 17 Cl 1000 10 640 19354 550 1000 b 19 K 4.9 28650 399 32500 2300 b 5.0 d 20 Ca 29450 412 30000 21 Sc 4.0 0.004 7.0 -- -- 1.0 j 22 Ti 600 0.1 3117 -- 1.6 j 23 V 40 279 53 0.003 25
Mining data from USGS Aluminum Production 30,000,000 Primary production 25,000,000 metric tons 20,000,000 Secondary production 15,000,000 Apparent consumption 10,000,000 World production 5,000,000 0 1850 1900 1950 2000 2050 year 26
Example: Mt Krakatoa • Mt Krakatoa ejected nearly 20km 3 into the air in 1883, almost total darkness in Jakarta, lowers earth’s temperature a few degrees for several years • tsunami kills 36,000 • child of Krakatowa 27
Mt Krakatoa* 1A VIIIA 1 2 H He IIA IIIA IVA VA VIA VIIA 4 5 6 7 8 9 10 3 Be B C N O F Ne Li 11 12 13 14 15 16 17 18 Na Mg Al Si P S Cl Ar IIB IVB VB VIB VIIB VIIIB IB IIB 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd ln Sn Sb Te I Xe 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Po At Rn 87 88 89 Fr Ra Ac 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 90 91 92 Th Pa U Dominat ed Pert urbed Unpert urbed Undet ermined (>50% of Mobilizat ion) (15-50% of Mobilizat ion) (<15% of Mobilizat ion) 28
Toxicity • nutrients and toxins • dose - response • LD 50 • persistent • bio-accumulative – lead – mercury – cadmium – arsenic 29
Periodic Table Showing Toxicity* 1A VIIIA 1 2 H He IIA IIIA IVA VA VIA VIIA 4 5 6 7 8 9 10 3 Be B C N O F Ne Li 11 12 13 14 15 16 17 18 Na Mg Al Si P S Cl Ar IIB IVB VB VIB VIIB VIIIB IB IIB 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd ln Sn Sb Te I Xe 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Po At Rn 87 88 89 Fr Ra Ac 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 90 91 92 Th Pa U High Toxicit y Moderat e Toxicit y *Adapt ed from Indust rial Ecology (Table 10.5) 30
Recommend
More recommend