the milnor number of plane irreducible singularities in
play

The Milnor number of plane irreducible singularities in positive - PowerPoint PPT Presentation

Introduction Main result Conjecture The Milnor number of plane irreducible singularities in positive characteristic Evelia Garca Barroso Universidad de La Laguna, Tenerife Levico Terme. July, 2016 Introduction Main result Conjecture In


  1. Introduction Main result Conjecture The Milnor number of plane irreducible singularities in positive characteristic Evelia García Barroso Universidad de La Laguna, Tenerife Levico Terme. July, 2016

  2. Introduction Main result Conjecture In this talk we present some results of E. García Barroso and A. Płoski, The Milnor number of plane irreducible singularities in positive characteristic , Bull. London Math. Soc. 48 (2016) 94-98.

  3. Introduction Main result Conjecture First definitions: intersection multiplicity K is algebraically closed field of characteristic p ≥ 0.

  4. Introduction Main result Conjecture First definitions: intersection multiplicity K is algebraically closed field of characteristic p ≥ 0. A branch is a curve { f = 0 } , where f ∈ K [[ x , y ]] is irreducible.

  5. Introduction Main result Conjecture First definitions: intersection multiplicity K is algebraically closed field of characteristic p ≥ 0. A branch is a curve { f = 0 } , where f ∈ K [[ x , y ]] is irreducible. For any power series f , h ∈ K [[ x , y ]] we define the intersection multiplicity i 0 ( f , h ) by putting i 0 ( f , h ) = dim K K [[ x , y ]] / ( f , h ) , where ( f , h ) is the ideal of K [[ x , y ]] generated by f and h .

  6. Introduction Main result Conjecture First definitions: intersection multiplicity K is algebraically closed field of characteristic p ≥ 0. A branch is a curve { f = 0 } , where f ∈ K [[ x , y ]] is irreducible. For any power series f , h ∈ K [[ x , y ]] we define the intersection multiplicity i 0 ( f , h ) by putting i 0 ( f , h ) = dim K K [[ x , y ]] / ( f , h ) , where ( f , h ) is the ideal of K [[ x , y ]] generated by f and h . Property Let f , h be non-zero power series without constant term. Then i 0 ( f , h ) < + ∞ if and only if { f = 0 } and { h = 0 } have no common branch.

  7. Introduction Main result Conjecture First definitions: semigroup of a branch Properties i 0 ( f , h 1 h 2 ) = i 0 ( f , h 1 ) + i 0 ( f , h 2 ) . i 0 ( f , 1 ) = 0 .

  8. Introduction Main result Conjecture First definitions: semigroup of a branch Properties i 0 ( f , h 1 h 2 ) = i 0 ( f , h 1 ) + i 0 ( f , h 2 ) . i 0 ( f , 1 ) = 0 . For any irreducible power series f ∈ K [[ x , y ]] , where K is an algebraically closed field of characteristic p ≥ 0, we put Γ( f ) = { i 0 ( f , h ) : h runs over all power series such that h �≡ 0 (mod f ) } .

  9. Introduction Main result Conjecture First definitions: semigroup of a branch Properties i 0 ( f , h 1 h 2 ) = i 0 ( f , h 1 ) + i 0 ( f , h 2 ) . i 0 ( f , 1 ) = 0 . For any irreducible power series f ∈ K [[ x , y ]] , where K is an algebraically closed field of characteristic p ≥ 0, we put Γ( f ) = { i 0 ( f , h ) : h runs over all power series such that h �≡ 0 (mod f ) } . Γ( f ) is a semigroup called the semigroup associated with the branch { f = 0 } .

  10. Introduction Main result Conjecture Properties of the semigroup Lemma Γ( f ) is a numerical semigroup (i.e. gcd (Γ( f )) = 1 ). There exists a unique sequence v 0 , . . . , v g such that v 0 = min (Γ( f ) \{ 0 } ) = ord f, v k = min (Γ( f ) \ N v 0 + · · · + N v k − 1 ) for k ∈ { 1 , . . . , g } , Γ( f ) = N v 0 + · · · + N v g .

  11. Introduction Main result Conjecture Properties of the semigroup Lemma Γ( f ) is a numerical semigroup (i.e. gcd (Γ( f )) = 1 ). There exists a unique sequence v 0 , . . . , v g such that v 0 = min (Γ( f ) \{ 0 } ) = ord f, v k = min (Γ( f ) \ N v 0 + · · · + N v k − 1 ) for k ∈ { 1 , . . . , g } , Γ( f ) = N v 0 + · · · + N v g . The sequence v 0 , . . . , v g is called the minimal sequence of generators of Γ( f ) .

  12. Introduction Main result Conjecture Properties of the semigroup Lemma Γ( f ) is a numerical semigroup (i.e. gcd (Γ( f )) = 1 ). There exists a unique sequence v 0 , . . . , v g such that v 0 = min (Γ( f ) \{ 0 } ) = ord f, v k = min (Γ( f ) \ N v 0 + · · · + N v k − 1 ) for k ∈ { 1 , . . . , g } , Γ( f ) = N v 0 + · · · + N v g . The sequence v 0 , . . . , v g is called the minimal sequence of generators of Γ( f ) . Definition Γ( f ) is a tame semigroup if p does not divide v k for all k ∈ { 0 , 1 , . . . , g } .

  13. Introduction Main result Conjecture Properties of the semigroup Let e k := gcd ( v 0 , . . . , v k ) for k ∈ { 1 , . . . , g } . Then e 0 > e 1 > · · · e g − 1 > e g = 1 and e k − 1 v k < e k v k + 1 for k ∈ { 1 , . . . , g − 1 } . Let n k := e k − 1 / e k for k ∈ { 1 , . . . , g } . Then n k > 1 for k ∈ { 1 , . . . , g } and n k v k < v k + 1 for k ∈ { 1 , . . . , g − 1 } .

  14. Introduction Main result Conjecture Properties of the semigroup Let e k := gcd ( v 0 , . . . , v k ) for k ∈ { 1 , . . . , g } . Then e 0 > e 1 > · · · e g − 1 > e g = 1 and e k − 1 v k < e k v k + 1 for k ∈ { 1 , . . . , g − 1 } . Let n k := e k − 1 / e k for k ∈ { 1 , . . . , g } . Then n k > 1 for k ∈ { 1 , . . . , g } and n k v k < v k + 1 for k ∈ { 1 , . . . , g − 1 } . Properties Γ( f ) is a strongly increasing semigroup. Γ( f ) has conductor g � c ( f ) = ( n k − 1 ) v k − v 0 + 1 . k = 1

  15. Introduction Main result Conjecture Properties of the semigroup Let e k := gcd ( v 0 , . . . , v k ) for k ∈ { 1 , . . . , g } . Then e 0 > e 1 > · · · e g − 1 > e g = 1 and e k − 1 v k < e k v k + 1 for k ∈ { 1 , . . . , g − 1 } . Let n k := e k − 1 / e k for k ∈ { 1 , . . . , g } . Then n k > 1 for k ∈ { 1 , . . . , g } and n k v k < v k + 1 for k ∈ { 1 , . . . , g − 1 } . Properties Γ( f ) is a strongly increasing semigroup. Γ( f ) has conductor g � c ( f ) = ( n k − 1 ) v k − v 0 + 1 . k = 1

  16. Introduction Main result Conjecture Milnor number The Milnor number of f is the intersection multiplicity µ ( f ) := i 0 ( f x , f y ) .

  17. Introduction Main result Conjecture Milnor number The Milnor number of f is the intersection multiplicity µ ( f ) := i 0 ( f x , f y ) . In characteristic zero we have µ ( f ) = c ( f ) , for any irreducible power series f ∈ K [[ x , y ]] , and consequently µ ( f ) is determined by Γ( f ) .

  18. Introduction Main result Conjecture But in positive characteristic is not, in general, true: Example (Boubakri-Greuel-Markwig) f = x p + y p − 1 and g = ( 1 + x ) f , where p > 2. Then Γ( f ) = Γ( g ) , c ( f ) = c ( g ) = ( p − 1 )( p − 2 ) but µ ( f ) = + ∞ and µ ( g ) = p ( p − 2 ) .

  19. Introduction Main result Conjecture But in positive characteristic is not, in general, true: Example (Boubakri-Greuel-Markwig) f = x p + y p − 1 and g = ( 1 + x ) f , where p > 2. Then Γ( f ) = Γ( g ) , c ( f ) = c ( g ) = ( p − 1 )( p − 2 ) but µ ( f ) = + ∞ and µ ( g ) = p ( p − 2 ) . In positive characteristic it is well-known that µ ( f ) ≥ c ( f ) .

  20. Introduction Main result Conjecture But in positive characteristic is not, in general, true: Example (Boubakri-Greuel-Markwig) f = x p + y p − 1 and g = ( 1 + x ) f , where p > 2. Then Γ( f ) = Γ( g ) , c ( f ) = c ( g ) = ( p − 1 )( p − 2 ) but µ ( f ) = + ∞ and µ ( g ) = p ( p − 2 ) . In positive characteristic it is well-known that µ ( f ) ≥ c ( f ) . We give necessary and sufficient conditions for the equality µ ( f ) = c ( f ) in terms of the semigroup associated with f , provided that p > v 0 = ord f =multiplicity of Γ( f ) .

  21. Introduction Main result Conjecture Main result Theorem (GB-P , May 2015) Let f ∈ K [[ x , y ]] be an irreducible singularity and let v 0 , . . . , v g be the minimal system of generators of Γ( f ) . Suppose that p = char K > v 0 . Then the following two conditions are equivalent: µ ( f ) = c ( f ) Γ( f ) is a tame semigroup (v k �≡ 0 (mod p) for k = 1 , . . . , g).

  22. Introduction Main result Conjecture Main result Theorem (GB-P , May 2015) Let f ∈ K [[ x , y ]] be an irreducible singularity and let v 0 , . . . , v g be the minimal system of generators of Γ( f ) . Suppose that p = char K > v 0 . Then the following two conditions are equivalent: µ ( f ) = c ( f ) Γ( f ) is a tame semigroup (v k �≡ 0 (mod p) for k = 1 , . . . , g). Example Let f ( x , y ) = ( y 2 + x 3 ) 2 + x 5 y . Then f is irreducible and Γ( f ) = 4 N + 6 N + 13 N , so the conductor is c ( f ) = 16. Let p = char K > v 0 = 4. If p � = 13 then µ ( f ) = c ( f ) by Theorem. If p = 13 then a direct calculation shows that µ ( f ) = 17.

  23. Introduction Main result Conjecture Ingredients of the proof Let f ∈ K [[ x , y ]] be an irreducible singularity with Γ( f ) = N v 0 + · · · + N v g . Since f is unitangent i 0 ( f , x ) = ord f = v 0 or i 0 ( f , y ) = ord f = v 0 . We assume that i 0 ( f , x ) = ord f = v 0 .

  24. Introduction Main result Conjecture Ingredients of the proof We need a sharpened version of Merle’s factorization theorem on polar curves: Theorem (Factorization of the polar curve) Suppose that v 0 = ord f �≡ 0 (mod p). Then ∂ f ∂ y = ψ 1 · · · ψ g in K [[ x , y ]] , where (i) ord ψ k = v 0 v 0 e k − e k − 1 for k ∈ { 1 , . . . , g } . (ii) If φ ∈ K [[ x , y ]] is an irreducible factor of ψ k , k ∈ { 1 , . . . , g } , then i 0 ( f , φ ) ord φ = e k − 1 v k , v 0 and � � v 0 (iii) ord φ ≡ 0 mod . e k − 1

  25. Introduction Main result Conjecture Ingredients of the proof Lemma Suppose that v 0 = ord f �≡ 0 (mod p). Then � f , ∂ f � i 0 = c ( f ) + ord f − 1 . ∂ y

Recommend


More recommend