the lager survey
play

The LAGER Survey Studying Reionization with Ly a emitters July 31, - PowerPoint PPT Presentation

The LAGER Survey Studying Reionization with Ly a emitters July 31, 2019 L. Infante Work mostly by ZhenYa Zheng, Huan Yang and Weida Hu OUTLINE Cosmic Reionization Phase Transition The LAGER survey Ly Galaxy Selection Using NB


  1. The LAGER Survey Studying Reionization with Ly a emitters July 31, 2019 L. Infante Work mostly by ZhenYa Zheng, Huan Yang and Weida Hu

  2. OUTLINE Cosmic Reionization Phase Transition § The LAGER survey § Ly α Galaxy Selection Using NB Filters § Spectroscopy of LAEs § Preliminary Results §

  3. Cosmic Reionization Phase Transition The universe changed from neutral to ionized § UV radiation generated in this process ionized HI § 300 and 900 million years after the Big Bang Fully Ionized Fully Ionized CMB E-mode H + γ à p + e - Polarization Quasar Gunn- WMAP, Planck Peterson Trough (Fan et al.) Fully Neutral Stars, galaxies and black holes were formed § However, No good physical description of this process §

  4. Lyman Alpha Galaxies in the Epoch of Reionization (LAGER) CHINA USA CHILE Junxian Wang (USTC)*, Sangeeta Malhotra (ASU, GSFC)*, Leopoldo Infante (LCO,PUC)*, Zhenya Zheng (SHAO)*, James Rhoads (ASU, GSFC)*, Felipe Barrientos (PUC), Weida Hu (USTC), Alistair Walker (NOAO/CTIO), Huan Yang (LCO), Linhua Jiang (PKU/KIAA), Francisco Valdes (NOAO) Pascale Hibon (ESO), Chunyan Jiang (SHAO), Alicia Gonzalez (ASU), Gaspar Galaz (PUC), Xu Kong, Wenyong Kang (USTC), Vithal Tilvi (ASU) , Franz Bauer (PUC), … Xianzhong Zheng (PMO) … Steven Finkelstein (U. Texas), …

  5. Why Ly a emitters? § Resonant scattering of Ly a photons is sensitive to neutral hydrogen in the IGM, making Ly a emitters § sensitive, § practical, and § powerful probe of the central phase of reionization. Why z ~7? Redshift z = 7 is the frontier in Ly a and reionization studies, and appears to be in the middle of reionization.

  6. “LAGER" project § Deep NB Imaging with CTIO 4mt DECam (3 deg 2 FOV) § Optimally designed NB filter to identify Ly a lines at z ~ 7.0. § Long-term NOAO-Chile program to observe an area of 24 deg 2 in 8 fields (1.6 x 10 7 Mpc 3 ) § Select a few hundreds of LAEs and study reionization with the clustering properties of these Ly a sources. § Spectroscopic follow-up with 6.5 mt Magellan Telescopes at LCO. § Estimate accurately the confirmation rates of LAE candidates § Get accurate LF § Use the LAEs clustering to study the ionized bubble and neutral gas fraction at z ~ 7.

  7. Narrow Band IMAGING

  8. NB Imaging Wc = 9642 Å & FWHM = 92 Å à z(Lyα) = 6.93+/-0.04

  9. i z DECam QE r g NB964 Y

  10. NB964 Filter Profile vs. Sky Lines NB964 Filter Design: Zheng, Rhoads et al. 2018

  11. LAGER Fields

  12. LAE Candidates at z ~ 7 1. significant detection Zheng+2017 in NB964 image; 2. color-excess of NB964 relative to the underlying broad- band; and 3. non-detection in the bluer broadband (veto band) to filter Field NB Broadband # of LAEs out foreground COSMOS 34hrs Subaru Suprime-Cam 23 Zheng+2017 COSMOS 47.25hrs Hyper Suprime-Cam 49 galaxies. Hu+2019 CDFS 33.67hrs DECam 30

  13. SPECTROSCOPY

  14. Spectroscopy LCO Magellan IMACS and LDSS3 z=7 confirmed LAEs § From 2017A to 2018B (2 years), we covered 50 LAEs candidates with Magellan in total and confirmed 24 LAEs. § In COSMOS, 33 LAE candidates covered and 17 confirmed. § In CDFS, 17 LAE candidates covered and 7 confirmed. Other § About 10 z=5.7 and 6.5 LAEs in COSMOS are also confirmed, but we haven’t paid much attention to them. § About 100 - 200 background H-alpha, H-beta, [OIII], [OII] emitters are covered. The confirmation rate is not counted.

  15. LyA Spectra

  16. RESULTS so far

  17. Number Density § In the LF paper, we showed § 49 LAEs in COSMOS and § 30 LAEs in CDFS. § Since each field is about 2 deg 2 , the number of LAEs at z ~ 7 is about 20/deg 2 . § Some faint-end LAEs are excluded from the sample. § If we can accept a higher contamination rate, then the number of LAE candidates per sq. deg could be ~ 40/deg 2 .

  18. Spatial Distribution 3 . 0 COSMOS CDFS − 27 . 3 2 . 5 − 27 . 8 Dec . Dec . 2 . 0 − 28 . 3 1 º ~ 20 Mpc − 28 . 8 1 . 5 150 . 9 150 . 4 149 . 9 149 . 4 53 . 5 53 . 0 52 . 5 52 . 0 R . A . R . A . highest redshift proto-clusters observed to date.

  19. LF Evolution − 2 . 5 z ∼ 5 . 7 − 1 Mpc − 3 ] − 3 . 0 z ∼ 6 . 6 z ∼ 7 . 0 − 3 . 5 z ∼ 7 . 3 log 10 Φ [ ∆ log 10 L Ly α − 4 . 0 − 4 . 5 − 5 . 0 − 5 . 5 − 6 . 0 − 6 . 5 42 . 4 42 . 6 42 . 8 43 . 0 43 . 2 43 . 4 43 . 6 43 . 8 44 . 0 log 10 L Ly α [ erg s − 1 ] Little Evolution of Lyα LF at z~5.7: Ouchi+2008 & Konno+2018 z~6.6: Ouchi+2010 & Konno+2018 z ~ 3-6 z~6.9: Hu+2019, Ota+ , Itoh+2018 (Ouchi+08, Faisst+2014, Zheng+2016, z~7.3: Konno+2014 Hu+2019..)

  20. LF Ly α Mpc − 3 ] COSMOS − 3 CDFS log 10 Φ [ ∆ log 10 L − 1 − 4 − 5 The bright-end shift − 6 42 . 4 42 . 6 42 . 8 43 . 0 43 . 2 43 . 4 43 . 6 43 . 8 log 10 L Ly α [ erg s − 1 ] Ly α Mpc − 3 ] • More luminous LAEs CDFS + COSMOS (L lya >10 43.3 erg/s) in − 3 log 10 Φ [ ∆ log 10 L − 1 COSMOS field! Suppoting − 4 inside-out reionization − 5 topology -> bubbles. − 6 42 . 4 42 . 6 42 . 8 43 . 0 43 . 2 43 . 4 43 . 6 43 . 8 • Faint-end LFs of the two log 10 L Ly α [ erg s − 1 ] fields are similar. 10 N 5 0 42 . 4 42 . 6 42 . 8 43 . 0 43 . 2 43 . 4 43 . 6 43 . 8 log 10 L Ly α [ erg s − 1 ]

  21. LF Neutral Hydrogen Fraction Ly α Mpc − 3 ] COSMOS − 3 CDFS log 10 Φ [ ∆ log 10 L − 1 − 4 At z~7 (Zheng+2017, Hu+2019) : log 10 ρ uv [erg s − 1 Hz − 1 Mpc − 3 ] − 5 26 . 0 log 10 ρ Ly α [erg s − 1 Mpc − 3 ] 40 . 0 • Different Evolution at − 6 42 . 4 42 . 6 42 . 8 43 . 0 43 . 2 43 . 4 43 . 6 43 . 8 Bright & Faint Ends log 10 L Ly α [ erg s − 1 ] 25 . 5 39 . 5 Ly α Mpc − 3 ] • Bright-End Excess CDFS + COSMOS − 3 suggests suggests the 25 . 0 39 . 0 log 10 Φ [ ∆ log 10 L − 1 existence of ionized − 4 bubbles at z ∼ 7 which 24 . 5 38 . 5 − 5 reduce the opacity of 5 6 7 8 − 6 Redshift 42 . 4 42 . 6 42 . 8 43 . 0 43 . 2 43 . 4 43 . 6 43 . 8 neutral IGM around the ρ Ly α = κ T IGM f esc ρ UV log 10 L Ly α [ erg s − 1 ] luminous LAEs = ρ Ly α 7.0 / ρ Ly α T IGM 7.0 5.7 = 0.63 ± 0.09 10 N T IGM ρ UV 7.0 / ρ UV 5 5.7 5.7 0 Compare with Santos+2004 and McQuinn+2007, 42 . 4 42 . 6 42 . 8 43 . 0 43 . 2 43 . 4 43 . 6 43 . 8 log 10 L Ly α [ erg s − 1 ] we conclude that x HI = 0.2 − 0.5

  22. Summary (work in progress) z ~ 7 § Compiled the largest-ever sample LAEs. § Number density ~ 20 LAE/deg 2 § Confirmed ~ 50% spectroscopically § Found a bright end shift in the LF in the COSMOS field, but not in the CDF field. § Derive a neutral hydrogen fraction x HI =0.2-0.4

  23. THANK YOU

Recommend


More recommend