the ladder a reliable leaderboard for machine learning
play

The Ladder: A Reliable Leaderboard for Machine Learning Competitions - PowerPoint PPT Presentation

The Ladder: A Reliable Leaderboard for Machine Learning Competitions COMS 6998-4 2017, Topics in Learning Theory Qinyao He qh2183@columbia.edu Columbia University November 30, 2017 . . . . . . . . . . . . . . . . . . . . .


  1. The Ladder: A Reliable Leaderboard for Machine Learning Competitions COMS 6998-4 2017, Topics in Learning Theory Qinyao He qh2183@columbia.edu Columbia University November 30, 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  2. Outline Introduction Problem Formulation Ladder Mechanism Parameter Free Modification Boosting Attack Experiment in Real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  3. Outline Introduction Problem Formulation Ladder Mechanism Boosting Attack Experiment in Real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  4. Kaggle Competition Figure: Public and Private Leaderboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  5. Overfiting ▶ Repeated submission to Kaggle leaderboard tends to overfit the public leaderboard dataset. ▶ Public leaderboard score may not represent the actual performance, participants can be mislead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  6. Overfiting ▶ Repeated submission to Kaggle leaderboard tends to overfit the public leaderboard dataset. ▶ Public leaderboard score may not represent the actual performance, participants can be mislead. ▶ In fact the error between the public leaderboard and actual √ k performance can be large as O ( n ), k is number of submission. ▶ How should we deal with that? How to maintain a leaderboard with reliable accurate estimation of the true performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  7. Ways to Reduce that Effect ▶ Limit the rate of submission (maximum of 10 submission per day). ▶ Limit the numerical accuracy returned by the leaderboard (rounding to fixed decimal digits). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  8. Ways to Reduce that Effect ▶ Limit the rate of submission (maximum of 10 submission per day). ▶ Limit the numerical accuracy returned by the leaderboard (rounding to fixed decimal digits). We want theoretical guarantee even for very large times of submission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  9. Outline Introduction Problem Formulation Ladder Mechanism Boosting Attack Experiment in Real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  10. Preliminaries and Notations ▶ Data domain X and label domain Y , unknown distribution D over X × Y . ▶ Classifier f : X → Y , loss function ℓ : Y × Y → [0 , 1]. ▶ Set of sample S = { ( x 1 , y 1 ) , . . . , ( x n , y n ) } drawn i.i.d from D . ▶ Empirical loss n R S ( f ) = 1 ∑ ℓ ( f ( x i ) , y i ) n i =1 ▶ True loss R D ( f ) = [ ℓ ( f ( x ) , y )] E ( x , y ) ∼D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  11. Leaderboard Model 1. Each time t a competitor submit a classifier f t (in practice a prediction over holdout dataset). 2. The leaderboard return a estimate of score R t to the competitor using public leaderboard dataset S . 3. Finally the true score over D is estimated over another set of private dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  12. Error Evaluation Given a sequence of classifier f 1 , f 2 , . . . , f k , and score by the leaderboard R t , we want to bound max | R D ( f t ) − R t | t i.e., we should make Pr[ ∃ t ∈ [ k ] : | R D ( f t ) − R t | > ϵ ] ≤ δ The error on private leaderboard should be close to the true loss since those private data are not revealed to the competitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  13. Kaggle Algorithm Algorithm 1 Kaggle Algorithm Input: Data set S , rounding parameter α > 0 (typically 0.00001) for each round t ← 1 , 2 , . . . do Receive function f t : X → Y return [ R S ( f t )] α end for [ x ] α denote rounding x to the nearest integer multiple of α . e.g., [3 . 14159] 0 . 01 = 3 . 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  14. Simple Non-adaptive Case ▶ Assume all f 1 , . . . , f k are fixed independent of S ▶ Just compute empirical loss R S ( f t ) as R t . ▶ Directly apply Hoeffding’s inequality and union bound we have Pr[ ∃ t ∈ [ k ] : | R D ( f t ) − R S ( f t ) | > ϵ ] ≤ 2 k exp( − 2 ϵ 2 n ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  15. Simple Non-adaptive Case ▶ Assume all f 1 , . . . , f k are fixed independent of S ▶ Just compute empirical loss R S ( f t ) as R t . ▶ Directly apply Hoeffding’s inequality and union bound we have Pr[ ∃ t ∈ [ k ] : | R D ( f t ) − R S ( f t ) | > ϵ ] ≤ 2 k exp( − 2 ϵ 2 n ) ▶ √ log k ϵ = O ( ) n k = O (exp( ϵ 2 n )) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  16. Adaptive Setting ▶ Classifier f t may be chosen as a function of previous estimate. f t = A ( f 1 , R 1 , . . . , f t − 1 , R t − 1 ) independence of f 1 , . . . , f k never holds, no longer union bounds over k ! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  17. Adaptive Setting ▶ Classifier f t may be chosen as a function of previous estimate. f t = A ( f 1 , R 1 , . . . , f t − 1 , R t − 1 ) independence of f 1 , . . . , f k never holds, no longer union bounds over k ! ▶ We will later show an simple attack for the Kaggle algorithm √ k to have error ϵ = Ω( n ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  18. Adaptive Setting ▶ Classifier f t may be chosen as a function of previous estimate. f t = A ( f 1 , R 1 , . . . , f t − 1 , R t − 1 ) independence of f 1 , . . . , f k never holds, no longer union bounds over k ! ▶ We will later show an simple attack for the Kaggle algorithm √ k to have error ϵ = Ω( n ). ▶ In fact no computational efficient way to achieve o (1) error with k ≥ n 2+ o (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  19. Leaderboard Error Previous setting of bounding error for every step is not possible. Introduce a weaker notion, we only cares about the best classifier submitted so far rather than accurately estimate all f i . Let R t returned by the leaderboard at time t represent the estimated loss of the currently best classifier. Definition Given adaptively chosen f 1 , . . . , f k , define leaderboard error of estimates R 1 , . . . , R k , � � � � lberr( R 1 , . . . , R k ) = max � min 1 ≤ i ≤ t R D ( f i ) − R t � � 1 ≤ t ≤ k � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  20. Outline Introduction Problem Formulation Ladder Mechanism Boosting Attack Experiment in Real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  21. Ladder Algorithm Algorithm 2 Ladder Algorithm Input: Data set S , step size η > 0 Assign initial state R 0 ← ∞ for each round t ← 1 , 2 , . . . do Receive function f t : X → Y if R S ( f t ) < R t − 1 − η then Assign R t ← [ R S ( f t )] η else Assign R t ← R t − 1 end if return R t end for Require an increase by some margin η to be considered as the new best. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  22. Error Bound Theorem For any adaptively chosen f 1 , . . . , f k , the Ladder Mechanism satisfy for all t ≤ k and ϵ > 0 , lberr ( R 1 , . . . , R k ) = O (log 1 / 3 ( kn ) ) n 1 / 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  23. Error Bound Theorem For any adaptively chosen f 1 , . . . , f k , the Ladder Mechanism satisfy for all t ≤ k and ϵ > 0 , lberr ( R 1 , . . . , R k ) = O (log 1 / 3 ( kn ) ) n 1 / 3 Put it another way, we can have up to k = O (1 n exp( n ϵ 3 )) submissions but still expect the leaderboard error to be small. Previously, k = O ( n 2 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  24. Proof ▶ Recall the union bound technique we apply in non-adaptive setting Pr[ ∃ t ∈ [ k ] : | R D ( f t ) − R S ( f t ) | > ϵ ] ≤ 2 k exp( − 2 ϵ 2 n ) ▶ No longer only k possible classifiers, need to consider all possible classifiers may appear to apply the union bound. ▶ Now the problem becomes counting the total number of different classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Recommend


More recommend