the interval branch and prune algorithm for the protein
play

The interval branch-and-prune algorithm for the protein structure - PowerPoint PPT Presentation

Introduction Global optimisation The interval branch-and-prune algorithm for the protein structure determination by NMR Th er` ese E Malliavin Unit e de Bioinformatique Structurale Institut Pasteur and UMR CNRS 3528 Paris, France


  1. Introduction Global optimisation The interval branch-and-prune algorithm for the protein structure determination by NMR Th´ er` ese E Malliavin Unit´ e de Bioinformatique Structurale Institut Pasteur and UMR CNRS 3528 Paris, France DIMACS Workshop on Distance Geometry: Theory and Applications Rutgers University, 26-29 July 2016 Th´ er` ese E Malliavin Protein structure

  2. Introduction Structural biology Global optimisation Order/disorder in structural biology Experimental techniques for structural biology MOLECULAR SIZE X-ray Cryo-EM D crystallography Nuclear Microscopy Magnetic I Resonance S O R D E R Small-angle X-ray scattering Th´ er` ese E Malliavin Protein structure

  3. Introduction Structural biology Global optimisation Order/disorder in structural biology The infancy of structural biology Model of pig insulin: Dorothy Hodgkin, 1967 (Image credit: Science Museum). John Kendrew with the ‘forest of rods’ model of myoglobin (Image credit: MRC Laboratory of Molecular Biology) Sausage model of myoglobin, John Kendrew, 1957 (Image credit: Science Museum). kathryngamer.co.uk/blog Th´ er` ese E Malliavin Protein structure

  4. Introduction Structural biology Global optimisation Order/disorder in structural biology Structural bioinformatics Th´ er` ese E Malliavin Protein structure

  5. Introduction Structural biology Global optimisation Order/disorder in structural biology Low ordered or disordered biomolecular structure Instrinsically « Unique » Conformational Disordered conformation exchange Proteins (IDP) nitrogen regulatory protein C (NtrC). Vanatta...Pande, Conotoxin, 1IEN Nat Comm 2014 Sharp...Lewis Nat Neurosc 2001 X-ray crystallography Bobela... Schneider, Biomolecules 2015 Nuclear Magnetic Resonance (solid-state, solution) Small-angle X-ray scattering Fluorescence resonance energy transfer Th´ er` ese E Malliavin Protein structure

  6. Introduction Structural biology Global optimisation Order/disorder in structural biology Exploration of AC conformational space Active Inactive AC inactive state enzyme enzyme Larger range of ? * explored gyration Bordetalla radii pertussis Dynamic light scattering Karst et al, Biochem 2010 Cortes-Ciriano, Bouvier, Nilges, Maragliano, Malliavin. Temperature Accelerated Molecular Dynamics with Soft-Ratcheting Criterion Orients Enhanced Sampling by Low-Resolution Information. J Chem Theory Comput 2015. Th´ er` ese E Malliavin Protein structure

  7. Introduction Structural biology Global optimisation Order/disorder in structural biology Exploration of AC conformational space R g (Å) 26.0 25.5 10 2 25.0 AC inactive state 1 24.5 Larger range of 3 explored gyration 24.0 radii 5 4 23.5 Clustered 9 compact 6 23.0 8 7 conformations 22.5 22.0 Cortes-Ciriano, Bouvier, Nilges, Maragliano, Malliavin. Temperature Accelerated Molecular Dynamics with Soft-Ratcheting Criterion Orients Enhanced Sampling by Low-Resolution Information. J Chem Theory Comput 2015. Th´ er` ese E Malliavin Protein structure

  8. Introduction Structural biology Global optimisation Order/disorder in structural biology Exploration of AC conformational space 1 2 3 AC inactive state 4 5 6 Larger range of explored gyration 7 8 9 radii Clustered compact 10 conformations Cortes-Ciriano, Bouvier, Nilges, Maragliano, Malliavin. Temperature Accelerated Molecular Dynamics with Soft-Ratcheting Criterion Orients Enhanced Sampling by Low-Resolution Information. J Chem Theory Comput 2015. Th´ er` ese E Malliavin Protein structure

  9. interval branch and prune Introduction Efficiency with exact distances Global optimisation Interval distances and folded proteins Global optimisation Global optimization is distinguished from regular optimization by its focus on finding the maximum or minimum over all input values, as opposed to finding local minima or maxima Martin, Zhou, Donald. Systematic solution to homo-ligomeric structures determined by NMR Proteins 2015. Th´ er` ese E Malliavin Protein structure

  10. interval branch and prune Introduction Efficiency with exact distances Global optimisation Interval distances and folded proteins Distance Geometry problem Problem Spheres intersection Malliavin, Mucherino, Nilges. Distance geometry in structural biology: new perspectives in: Distance Geometry: Theory, Methods and Applications, Mucherino, Lavor, Liberti, Maculan (Eds.), Springer 2013. Th´ er` ese E Malliavin Protein structure

  11. interval branch and prune Introduction Efficiency with exact distances Global optimisation Interval distances and folded proteins Distance Geometry problem Search for the position of an atom X such that: dist(X,C) = d 1 , dist(X,HN) = d 2 , dist(X,CA) = d 3 Problem ● ● Spheres C ● ● HN intersection d 1 d 2 Tree: branch and prune d 3 CA ● Malliavin, Mucherino, Nilges. Distance geometry in structural biology: new perspectives in: Distance Geometry: Theory, Methods and Applications, Mucherino, Lavor, Liberti, Maculan (Eds.), Springer 2013. Th´ er` ese E Malliavin Protein structure

  12. interval branch and prune Introduction Efficiency with exact distances Global optimisation Interval distances and folded proteins Distance Geometry problem Problem Spheres intersection Tree: branch and prune Atoms recursive ordering Malliavin, Mucherino, Nilges. Distance geometry in structural biology: new perspectives in: Distance Geometry: Theory, Methods and Applications, Mucherino, Lavor, Liberti, Maculan (Eds.), Springer 2013. Th´ er` ese E Malliavin Protein structure

  13. interval branch and prune Introduction Efficiency with exact distances Global optimisation Interval distances and folded proteins Distance Geometry problem Problem Spheres intersection Tree: branch and prune Atoms recursive ordering Malliavin, Mucherino, Nilges. Distance geometry in structural biology: new perspectives in: Distance Geometry: Theory, Methods and Applications, Mucherino, Lavor, Liberti, Maculan (Eds.), Springer 2013. Th´ er` ese E Malliavin Protein structure

  14. interval branch and prune Introduction Efficiency with exact distances Global optimisation Interval distances and folded proteins Atom recursive ordering and branching distances Atom ordering and branching i-3 Distances corresponding to chemical bond, or to 2 i-2 chemical bonds connected by a bond angle Distances that can be exact or interval i-1 i-2 i i-3 Case without cycle i i i-1 i-2 Positive Negative I i = i -3 Case with sin( ω ) sin( ω ) cycle di-3,i = 0 di-3,i-2 = di,i-2 i-1 cos( ω ) = 1 sin( ω ) = 0 Th´ er` ese E Malliavin Protein structure

  15. interval branch and prune Introduction Efficiency with exact distances Global optimisation Interval distances and folded proteins Helical peptides with long-range distance restraints Exploration of 2KXA (aa) 2KSL (aaaa) conformations using few long-range distance restraints Superposition to Protein Data Bank target structures Cassioli, Bardiaux, Bouvier, Mucherino, Alves, Liberti, Nilges, Lavor C, Malliavin TE. BMC Bioinformatics 2015 Th´ er` ese E Malliavin Protein structure

  16. interval branch and prune Introduction Efficiency with exact distances Global optimisation Interval distances and folded proteins Helical peptides with long-range distance restraints 2KXA 2KSL Exploration of conformations using few C long-range N distance restraints PROCHECK 2KXA 2KSL N Core 63.6 75.5 Superposition to Allowed 36.4 14.2 C Protein Data Generously Allowed 0.0 9.2 Bank target Disallowed 0.0 1.0 structures Cassioli, Bardiaux, Bouvier, Mucherino, Alves, Liberti, Nilges, Lavor C, Malliavin TE. BMC Bioinformatics 2015 Th´ er` ese E Malliavin Protein structure

  17. interval branch and prune Introduction Efficiency with exact distances Global optimisation Interval distances and folded proteins Validation set of proteins PDB Nres SecStruct EXP PDB Nres SecStruct EXP 1CEY 128 ababababab NMR 2MJ6 90 aabbbb NMR 2F05 85 aaaa NMR 2MLA 37 babb NMR 2KSL 51 aaaa NMR 2MNI 92 baabba NMR 2KXA 24 aa NMR 2MP1 77 bbba NMR 2LJ0 65 bbbbb NMR 2MW9 33 bbb NMR 2LVR 30 bba NMR 2MXE 47 bbaab NMR 2LXZ 32 bbb NMR 2N17 56 bbab NMR 2M5X 40 bbab NMR 2N2Q 54 babb NMR 2MC6 73 bbba NMR 2RUP 58 bbb NMR 2MDI 56 bbb NMR 4BYA 75 aaaa NMR 2MGV 65 abbb NMR 4OU0 66 abaabb XR 2MH2 64 abaabb NMR 4RBX 32 bbb XR Calculations using exact distances and intervals, determined from a limited informative set of restraints. Th´ er` ese E Malliavin Protein structure

  18. interval branch and prune Introduction Efficiency with exact distances Global optimisation Interval distances and folded proteins Short-range exact distance are used Residue i Residue i+1 O H C CB CB Exact branching distances Exact pruning distances: involved residues Ap = 5,4: (i,i) (i,i+1) Ap = 9: (i,i+1) Ap = 6,4: (i,i) (i,i+1) Ap = 10: (i,i+1) (i,i+2) Ap = 7,4: (i,i) (i,i+1) Ap = 11: (i,i+1) (i,i+2) Ap = 8,4: (i,i) (i,i+1) (i,i+2) Ap = 12: (i,i+1) (i,i+2) Th´ er` ese E Malliavin Protein structure

Recommend


More recommend