the interplay between direct detection and collider
play

The Interplay between Direct Detection and Collider searches Sonia - PowerPoint PPT Presentation

The Interplay between Direct Detection and Collider searches Sonia El Hedri DM@LHC 2019, University Of Washington August 14, 2019 1 / 17 Dark Matter: the first steps Hypothesis : non-gravitational DM-SM interactions DM mass in 1 GeV


  1. The Interplay between Direct Detection and Collider searches Sonia El Hedri DM@LHC 2019, University Of Washington August 14, 2019 1 / 17

  2. Dark Matter: the first steps ◮ Hypothesis : non-gravitational DM-SM interactions DM mass in 1 GeV – 10 TeV ⇒ DM-nucleus interactions: Direct Detection (DD) ⇒ DM production at colliders ◮ Starting point: focus on a single DM-SM interaction process Relic density? Direct detection SM 2 DM SM 1 DM Colliders 2 / 17

  3. Dark Matter: the first steps ◮ Hypothesis : non-gravitational DM-SM interactions DM mass in 1 GeV – 10 TeV ⇒ DM-nucleus interactions: Direct Detection (DD) ⇒ DM production at colliders ◮ Starting point: focus on a single DM-SM interaction process Effective Operators Simplified Models Direct detection Colliders DM SM DM SM M DM SM DM SM ◮ NOT consistent theories! ⇒ Very limited range of validity ◮ Limited number of parameters – Simple and generic conclusions 2 / 17

  4. Simplified models: the portals q ¯ DM X 1 Y 2 DM H q ˜ Z ′ DM H X 2 Y 1 q DM Higgs portal Gauge portal “Squark” portal ◮ Manageable number of parameters: from 2 to 8 ◮ Categorizing: DM spin + type of interactions χhχ i vs χγ 5 hχ Example: ◮ Limited number of LHC searches: o Higgs invisible width o (mono)jet + / E T o dijet/dilepton resonances 3 / 17

  5. Portals: main conclusions Complementarity ◮ Colliders: m DM � 10 GeV ◮ Direct detection 10 GeV → multi-TeV [Arcadi et al, arXiv:1903:03616] ◮ Direct detection “on/off switch” o Spin-Independent (SI) cross-section: tight constraints o Spin-dependent (SD)/velocity-suppressed SI : very weak constraints ◮ “Blind spots” : o Pseudoscalar Higgs portal: χγ 5 hχ o Leptophobic axial-vector Z ′ : χγ µ γ 5 χZ ′ µ o Squark portal with Majorana DM 4 / 17

  6. Portals: main conclusions Complementarity ◮ Colliders: m DM � 10 GeV ◮ Direct detection 10 GeV → multi-TeV [Arcadi et al, arXiv:1903:03616] ◮ Direct detec o Spin-Inde (SI) cross-section o Spin-dependent (SD )/velocity constraints ◮ “Blind spots” : o Pseudoscalar Higgs portal: χγ 5 hχ o Leptophobic axial-vector Z ′ : χγ µ γ 5 χZ ′ µ o Squark portal with Majorana DM 4 / 17

  7. Portals: main conclusions Complementarity ◮ Colliders: m DM � 10 GeV ◮ Direct detection 10 GeV → multi-TeV [Arcadi et al, arXiv:1903:03616] ◮ Direct detection “on/off switch” o Spin-Independent (SI) cross-section: tight constraints o Spin-dependent (SD)/velocity-suppressed SI : very weak constraints ◮ “Blind spots” : o Pseudoscalar Higgs portal: χγ 5 hχ o Leptophobic axial-vector Z ′ : χγ µ γ 5 χZ ′ µ o Squark portal with Majorana DM 4 / 17

  8. Dark matter viewed from portals Colliders Direct Detection m DM � 10 GeV 1 GeV − → 1 TeV SI unsuppressed Monojet + / fffffffffffffffffffff E T jets + / E T Strong constraints ffffffff Di-jet resonances fffffffffffffffffffffffffffffffffffffffffff up to O (10) TeV Higgs invisible decay fffffff ffffff Di-lepton resonances SI suppressed Very weak or no constraints 5 / 17

  9. The portals: deeper and beyond ◮ Uncertainty evaluation/precision studies ◮ The curse of complexity: making models consistent ◮ Complex dark sectors and compressed signatures ◮ Summary and perspectives 6 / 17

  10. Dealing with uncertainties Loop Nuclear physics calculation 7 / 17

  11. Nuclear physics and loop corrections Nuclear Physics: ◮ From DM coupling to quarks to couplings to nucleons ◮ Chiral EFT allows to considerably reduce uncertainties on effective couplings [Hoferichter et al, [arXiv:1903.11075]] Loop calculation: ◮ See previous talks by K. Mohan and R. Santos ◮ Crucial in the “blind spots” of the portal models ◮ Loop-level SI interactions give the strongest bounds! ◮ Need to compute RGE running effects and k-factors for the LHC 8 / 17

  12. Uncertainties: Yes but... What if our biggest source of error was the Astrophysical observations Non-renormalizable model itself? Anomalies Extended dark sectors? Massive vector bosons 9 / 17

  13. The problem with consistency: the Z’ portal L dark ⊃ Z ′ χγ µ ( g V χ − ig A χ γ 5 ) χ + Z ′ � qγ µ ( g V q − ig A µ ¯ ¯ q ) q µ q ℓ ) ℓ + 1 ¯ ′ µ + Z ′ � ℓγ µ ( g V ℓ − ig A 2 M 2 Z ′ Z ′ µ Z µ ℓ ◮ Unitarity: dark U (1) ′ symmetry with a Higgs singlet S ◮ Anomalies: SM and dark charges must obey sum rules... [Ellis et al, JHEP 08 (2017) 053] ◮ Surprisingly hard to achieve for a leptophobic axial-vector Z ′ [SEH, K. Nordström, Scipost Phys. 6 (2019) no.2, 020] ◮ “Minimal model”: 6 new Weyl fermions, 13 new parameters! o New SU(2) doublets – Doublet-singlet mixing o SI interactions are back ⇒ constraints from XENON1T o Heavy fermions ⇒ LHC EWinos searches & final state leptons Just making gauge portal models consistent leads to a completely unexpected phenomenology 10 / 17

  14. The problem with consistency: the Z’ portal L dark ⊃ Z ′ χγ µ ( g V χ − ig A χ γ 5 ) χ + Z ′ � qγ µ ( g V q − ig A µ ¯ ¯ q ) q µ q ℓ ) ℓ + ✘✘✘✘✘✘ ✘ 1 ℓγ µ ( g V ¯ ℓ − ig A 2 M 2 ′ µ + Z ′ � Z ′ Z ′ µ Z µ ℓ ◮ Unitarity: dark U (1) ′ symmetry with a Higgs singlet S ◮ Anomalies: SM and dark charges must obey sum rules... [Ellis et al, JHEP 08 (2017) 053] ◮ Surprisingly hard to achieve for a leptophobic axial-vector Z ′ [SEH, K. Nordström, Scipost Phys. 6 (2019) no.2, 020] ◮ “Minimal model”: 6 new Weyl fermions, 13 new parameters! o New SU(2) doublets – Doublet-singlet mixing o SI interactions are back ⇒ constraints from XENON1T o Heavy fermions ⇒ LHC EWinos searches & final state leptons Just making gauge portal models consistent leads to a completely unexpected phenomenology 10 / 17

  15. The problem with consistency: the Z’ portal ✓ L dark ⊃ Z ′ χγ µ ( ✓ g V χ − ig A χ γ 5 ) χ + Z ′ � qγ µ ( g V q − ig A µ ¯ ¯ q ) q µ q ✘ ✘ ✘✘✘✘✘✘✘✘✘✘ ℓ ) ℓ + ✘✘✘✘✘✘ 1 ¯ Z ′ � ℓγ µ ( g V ℓ − ig A 2 M 2 Z ′ Z ′ ′ µ + µ Z µ ℓ ◮ Unitarity: dark U (1) ′ symmetry with a Higgs singlet S ◮ Anomalies: SM and dark charges must obey sum rules... [Ellis et al, JHEP 08 (2017) 053] ◮ Surprisingly hard to achieve for a leptophobic axial-vector Z ′ [SEH, K. Nordström, Scipost Phys. 6 (2019) no.2, 020] ◮ “Minimal model”: 6 new Weyl fermions, 13 new parameters! o New SU(2) doublets – Doublet-singlet mixing o SI interactions are back ⇒ constraints from XENON1T o Heavy fermions ⇒ LHC EWinos searches & final state leptons Just making gauge portal models consistent leads to a completely unexpected phenomenology 10 / 17

  16. Extended sectors: The Higgs portal With fermionic dark matter � c Λ χ † χH † H Non-renormalizable L ⊃ λ χ χ † Hχ Impossible! Completions: [LHC DM working group, Phys.Dark Univ. 100351], [Arcadi et al, arXiv:1903:03616] ◮ Additional fermions : Vector-like/chiral fermions, 4-rth generation ◮ Additional scalars : (pseudo)scalar singlet ◮ Combined models : 2HDM + fermions singlet coupling to DM and SM-charged fermions Phenomenology: ◮ From 4 to 14 parameters! Most models explored by ATLAS [ATLAS, JHEP 05 (2019) 142] ◮ Direct detection : robust conclusions,scalar/pseudoscalar dichotomy ◮ Colliders : monojets + / E T , scalar resonances, SUSY searches, new fermions, Higgs coupling measurements, collimated diphoton pairs... 11 / 17

  17. Beyond the portals: updated picture Monojet + / fffffffffffffffffffff E T jets + / E T ffffffff Di-jet resonances fffffffffffffffffffffffffffffffffffffffffff Direct Detection Higgs invisible decay fffffff m DM � 10 GeV ffffff Di-lepton resonances SI unsuppressed Electroweakinos Strong constraints fffffffffffffffffffff Higgs coupling measurements up to O (10) TeV ffffffff Collimated photon pairs Flavor physics ffffffffffffffffffffffffffffffffffffffffffffff (Pseudo)scalar resonances fffffff SI suppressed EWPT Heavy fermions ffffff Are you sure? Loop effects Extended dark sectors 12 / 17

  18. Reviving thermal dark matter ◮ Direct detection + LHC bounds can push us into regions where DM annihilation is extremely inefficient ◮ These regions are often overlooked in thermal DM scenarios ◮ How could this change with extended dark sectors? DM H DM H [Arcadi et al, arXiv:1903:03616] 13 / 17

  19. Reviving thermal dark matter ◮ Direct detection + LHC bounds can push us into regions where DM annihilation is extremely inefficient ◮ These regions are often overlooked in thermal DM scenarios ◮ How could this change with extended dark sectors? SM 1 SM 1 SM 1 DM DM X SM 2 SM 2 SM 2 DM X X ◮ Coannihilation : DM in equilibrium with another particle X ⇒ new ways of depleting the dark sector ◮ X can be anything: strongly interacting, charged, etc... ◮ Colliders push us into very compressed topologies: down to O (10)% at the LHC and O (1)% at FCC-hh [Baker et al, JHEP 1512 (2015) 120], [SEH et al, JHEP 1704 (2017) 118] ◮ DM-SM couplings can now be tiny! 13 / 17

Recommend


More recommend