The Input/Output Complexity of Sparse Matrix Multiplication Rasmus Pagh, Morten St¨ ockel IT University of Copenhagen September 9 2014 Pagh, St¨ ockel September 9 2014 1 / 29
Sparse matrix multiplication Problem description Sparse matrix multiplication Problem description Upper bound Size estimation Partitioning Outputting from partitions Pagh, St¨ ockel September 9 2014 2 / 29
Sparse matrix multiplication Problem description Overview I Let A and C be matrices over a semiring R with N nonzero entries in total. I The problem: Compute matrix product [ AC ] i,j = P k A i,k C k,j with Z nonzero entries. I Central result: Can be done in (for most of parameter space) optimal p ⇣ ⌘ ˜ N Z O I/Os. p B M Pagh, St¨ ockel September 9 2014 3 / 29
Sparse matrix multiplication Problem description Matrix multiplication, basics ... ... ... a 11 a 12 a 1 p c 11 c 12 c 1 q ac 11 ac 12 ac 1 q ... ... ... a 21 a 22 a 2 p c 21 c 22 c 2 q ac 21 ac 22 ac 2 q × = . . . . . . . . ... . ... ... . . . . . . . . . . . . . . . . . . ... ... ... a n 1 a n 2 a np c p 1 c p 2 c pq ac n 1 ac n 2 ac nq C : p rows q columns A : n rows p columns AC = A × C : n rows q columns Pagh, St¨ ockel September 9 2014 4 / 29
Sparse matrix multiplication Problem description Matrix multiplication, basics C : p rows q columns ... c 11 c 12 c 1 q ... c 21 c 22 c 2 q a 21 × c 12 . . ... . . . . + . . . 2 2 c × 2 2 a ... c p 1 c p 2 c pq + ... + 2 c p × p 2 a ... ... a 11 a 12 a 1 p ac 11 ac 12 ac 1 q ... ... a 21 a 22 a 2 p ac 21 ac 22 ac 2 q . . . . . . ... ... . . . . . . . . . . . . ... ... a n 1 a n 2 a np ac n 1 ac n 2 ac nq A : n rows p columns AC = A × C : n rows q columns Pagh, St¨ ockel September 9 2014 5 / 29
Sparse matrix multiplication Problem description Cancellation of elementary products C : p rows q columns ... c 11 c 12 c 1 q ... c 21 c 22 c 2 q a 21 × c 12 . . ... . . . . + c 22 . . . × a 22 ... c p 1 c p 2 c pq + . . . + c p 2 × a 2 p We say that we have cancellation ... ... a 11 a 12 a 1 p ac 11 ac 12 ac 1 q a 21 a 22 ... a 2 p ac 21 ac 22 ... ac 2 q when two or more summands of . . . . . . ... ... . . . . . . . . . . . . [ AC ] i,j = P k A i,k C k,j are nonzero ... ... a n 1 a n 2 a np ac n 1 ac n 2 ac nq but the sum is zero, e.g. A : n rows p columns AC = A × C : n rows q columns � 2 ⇤ 3 + 1 ⇤ 6 + 0 ⇤ 4 . Our algorithm handles such cases. 1 Pagh, St¨ ockel September 9 2014 6 / 29
Sparse matrix multiplication Problem description Motivation Some applications: I Computing determinants and inverses of matrices. I Bioinformatics. I Graphs: counting cycles, computing matchings. Pagh, St¨ ockel September 9 2014 7 / 29
Sparse matrix multiplication Problem description The semiring I/O model, 1 I A word is big enough to hold a matrix element plus its coordinates. I Internal memory that holds M words and disk of infinite size. I One I/O: Transfer B words from disk to internal memory. I Cost of an algorithm: Number of I/Os used. I Operations allowed: Semiring operations, copy and equality check. Pagh, St¨ ockel September 9 2014 8 / 29
Sparse matrix multiplication Problem description The semiring I/O model, 2 I We make no assumptions about cancellation. I To produce output: must invoke emit ( . ) on every nonzero output entry once. I Matrices are of size U ⇥ U . I ˜ O suppresses polylog factors in U and N . Pagh, St¨ ockel September 9 2014 9 / 29
Sparse matrix multiplication Problem description Our results, 1 I Let A and C be U ⇥ U matrices over semiring R with N nonzero input and Z nonzero output entries. There exist algorithms 1 and 2 such that: 1. emits the set of nonzero entries of AC with probability at least p p ⇣ ⌘ 1 � 1 /U , using ˜ O N Z/ ( B M ) I/Os. � N 2 / ( MB ) � 2. emits the set of nonzero entries of AC , and uses O I/Os. p ⇣ ⌘ I Previous best [Amossen & Pagh, 09]: ˜ Z/ ( BM 1 / 8 ) O N I/Os (boolean matrices = ) no cancellation). Pagh, St¨ ockel September 9 2014 10 / 29
Sparse matrix multiplication Problem description Our results, 2 I Let A and C be U ⇥ U matrices over semiring R with N nonzero input and Z nonzero output entries. There exist algorithms 1 and 2 such that: 1. emits the set of nonzero entries of AC with probability at least p p ⇣ ⌘ 1 � 1 /U , using ˜ O N Z/ ( B M ) I/Os. � N 2 / ( MB ) � 2. emits the set of nonzero entries of AC , and uses O I/Os. p ⇣ ⇣ ⌘⌘ N 2 MB , N Z I There exist matrices that require Ω min I/Os to p MB compute all nonzero entries of AC . Pagh, St¨ ockel September 9 2014 10 / 29
Upper bound Size estimation Output size estimation Size estimation tool: Given matrices A and C with N nonzero entries, compute ε -estimate of number of nonzeroes of each column of AC using ˜ O ( ε � 3 N/B ) I/Os. Black boxed used [BBFJV,07]: Fact For dense 1 ⇥ U vector y and sparse U ⇥ U matrix S we can compute yS in O (( nnz ( S ) /B ) log M/B ( U/M )) = ˜ O (( nnz ( S ) /B ) I/Os. Pagh, St¨ ockel September 9 2014 11 / 29
Upper bound Size estimation Distinct elements and matrix size I Distinct elements: Given frequency vector x of size n where x i i | x i | 0 . denotes the number of times element i occurs, then F 0 = P I Fundamental problem in streaming: Estimate F 0 without materializing x . I Observation: The distinct elements of AC is nnz ( AC ) . Pagh, St¨ ockel September 9 2014 12 / 29
Upper bound Size estimation Linear distinct elements sketch, 1 Simple linear distinct elements sketch [Indyk slides, McGregor book]. Answer question: For a picked T , is F 0 > (1 + ε ) T ? 1. Select sets S 1 , . . . , S k of coordinates s.t. Pr [ i 2 S j ] = 1 /T . 2. For each S i : s j ( x ) = P i 2 S j x i . 3. Answer yes if at most k/e of s j are zero. Analysis: For one set S j we have Pr [ s j = 0] = (1 � 1 /T ) F 0 ⇡ e � F 0 /T . If F 0 > (1 + ε ) T then Pr [ s j = 0] < 1 /e � ε / 3 . Repeat for k = O ( ε � 2 log δ � 1 ) independent sets to get probability 1 � δ . Pagh, St¨ ockel September 9 2014 13 / 29
Upper bound Size estimation Linear distinct elements sketch, 2 I Can answer if F 0 > (1 + ε ) T for some T . I Repeat for T = 1 , (1 + ε ) , (1 + ε ) 2 , . . . , n , i.e. O ( ε � 1 log n ) values. I Total space: O ( ε � 3 log n log δ � 1 ) . I Note: Random sets S j form k ⇥ n projection matrix F and we maintain Fx . I Linearity: F ( x + e i ) = Fx + Fe i Pagh, St¨ ockel September 9 2014 14 / 29
Upper bound Size estimation Output estimation F is ε � 2 log δ � 1 ⇥ U . A and C are U ⇥ U . To get size estimate we must compute: F ⇥ A ⇥ C Pagh, St¨ ockel September 9 2014 15 / 29
Upper bound Size estimation Output estimation F is ε � 2 log δ � 1 ⇥ U . A and C are U ⇥ U . To get size estimate we must compute: ( F ⇥ A ) ⇥ C Due to associativity: Pick cheap order. Analysis: ε � 2 log δ � 1 invocations of dense vector sparse matrix black box: ˜ O ( ε � 3 N/B ) I/Os. Note: Works with cancellation, contrary to previous size estimation. Pagh, St¨ ockel September 9 2014 15 / 29
Upper bound Partitioning Matrix mult partitioning, 1 ⇥ A C Pagh, St¨ ockel September 9 2014 16 / 29
Upper bound Partitioning Matrix mult partitioning, 1 ⇥ A C Pagh, St¨ ockel September 9 2014 16 / 29
Upper bound Partitioning Matrix mult partitioning, 2 A C = ⇥ + + + ⇥ ⇥ ⇥ ⇥ Pagh, St¨ ockel September 9 2014 17 / 29
Recommend
More recommend