the hanoi omega automata format
play

The Hanoi Omega-Automata Format Tom Babiak 1 Frantiek Blahoudek 1 - PowerPoint PPT Presentation

The Hanoi Omega-Automata Format Tom Babiak 1 Frantiek Blahoudek 1 Alexandre Duret-Lutz 2 Joachim Klein 3 retnsk 5 Jan K David Mller 3 David Parker 4 cek 1 Jan Strej 1 Faculty of Informatics, Masaryk University, Brno, Czech Republic


  1. The Hanoi Omega-Automata Format Tomáš Babiak 1 František Blahoudek 1 Alexandre Duret-Lutz 2 Joachim Klein 3 retínský 5 Jan Kˇ David Müller 3 David Parker 4 cek 1 Jan Strejˇ 1 Faculty of Informatics, Masaryk University, Brno, Czech Republic 2 LRDE, EPITA, Le Kremlin-Bicêtre, France 3 Technische Universität Dresden, Germany f a c t 4 University of Birmingham, UK i t r A * 5 IST Austria C o m p * l t e n t e e A * t s i W s E * n e o C l l C V D CAV’15, July 23 * o A * c e u s C u m e E e R n * o t e v t d y s * a E d a e l u t a 1 / 4

  2. Motivation ◮ there exist many tools that I/O ω -automata with various acceptance conditions (Büchi, Rabin, Streett, Parity...) ◮ missing an interchange format for ω -automata 2 / 4

  3. Motivation ◮ there exist many tools that I/O ω -automata with various acceptance conditions (Büchi, Rabin, Streett, Parity...) ◮ missing an interchange format for ω -automata ◮ evidence that generalized acceptance conditions are useful e.g., orders-of-magnitude speed-up for probabilistic LTL model checking using generalized Rabin acceptance [Chatterjee et al., CAV’13] ◮ need support for generic acceptance conditions 2 / 4

  4. Motivation ◮ there exist many tools that I/O ω -automata with various acceptance conditions (Büchi, Rabin, Streett, Parity...) ◮ missing an interchange format for ω -automata ◮ evidence that generalized acceptance conditions are useful e.g., orders-of-magnitude speed-up for probabilistic LTL model checking using generalized Rabin acceptance [Chatterjee et al., CAV’13] ◮ need support for generic acceptance conditions ◮ support for a wide range of other features (alternation, transition-based acceptance, streaming...) 2 / 4

  5. A Rabin automaton for G F a → G F b � � � � Fin ( 0 ) ∧ Inf ( 1 ) ∨ Fin ( 2 ) ∧ Inf ( 3 ) �� � � �� F = { 0 , 2 } , { 1 , 3 } ∅ , { 2 , 4 } , a ¯ a ¯ ¯ b b a ¯ ¯ b 0 1 0 1 a ¯ ¯ b ¯ ab a ¯ a ¯ ¯ ¯ ab ¯ ab b b a ¯ ¯ b ¯ ab 2 3 0 3 1 3 ab ¯ ab a ¯ ab ¯ b ab 3 / 4

  6. A Rabin automaton for G F a → G F b � � � � Fin ( 0 ) ∧ Inf ( 1 ) ∨ Fin ( 2 ) ∧ Inf ( 3 ) HOA: v1 a ¯ a ¯ ¯ b b States: 4 Start: 0 a ¯ ¯ b AP: 2 "a" "b" 0 1 acc-name: Rabin 2 0 1 a ¯ Acceptance: 4 ¯ b Fin( 0 )&Inf( 1 )|Fin( 2 )&Inf( 3 ) ¯ ab --BODY-- a ¯ a ¯ ¯ ¯ ab ¯ ab b b State: 0 { 0 } a ¯ ¯ b [!0&!1] 1 [0&!1] 0 [!0&1] 3 [0&1] 2 ¯ ab State: 1 { 1 } 2 3 [!0&!1] 1 [0&!1] 0 [!0&1] 3 [0&1] 2 0 3 1 3 State: 2 { 0 3 } ab [!0&!1] 1 [0&!1] 0 [!0&1] 3 [0&1] 2 State: 3 { 1 3 } ¯ ab a ¯ ab ¯ b [!0&!1] 1 [0&!1] 0 [!0&1] 3 [0&1] 2 --END-- ab 3 / 4

  7. A Rabin automaton for G F a → G F b � � � � Fin ( 0 ) ∧ Inf ( 1 ) ∨ Fin ( 2 ) ∧ Inf ( 3 ) HOA: v1 a ¯ a ¯ ¯ b b States: 4 Start: 0 a ¯ ¯ b AP: 2 "a" "b" 0 1 acc-name: Rabin 2 0 1 a ¯ Acceptance: 4 ¯ b Fin( 0 )&Inf( 1 )|Fin( 2 )&Inf( 3 ) ¯ ab --BODY-- a ¯ a ¯ ¯ ¯ ab ¯ ab b b State: 0 { 0 } a ¯ ¯ b [!0&!1] 1 [0&!1] 0 [!0&1] 3 [0&1] 2 ¯ ab State: 1 { 1 } 2 3 [!0&!1] 1 [0&!1] 0 [!0&1] 3 [0&1] 2 0 3 1 3 State: 2 { 0 3 } ab [!0&!1] 1 [0&!1] 0 [!0&1] 3 [0&1] 2 State: 3 { 1 3 } ¯ ab a ¯ ab ¯ b [!0&!1] 1 [0&!1] 0 [!0&1] 3 [0&1] 2 --END-- ab 3 / 4

  8. An ω -automaton for G F a → G F b � � Fin ( 0 ) ∧ Inf ( 1 ) ∨ Inf ( 2 ) HOA: v1 a ¯ a ¯ ¯ b b States: 4 Start: 0 a ¯ ¯ b AP: 2 "a" "b" 0 1 0 1 a ¯ Acceptance: 3 ¯ b Fin( 0 )&Inf( 1 )|Inf( 2 ) ¯ ab --BODY-- a ¯ a ¯ ¯ ¯ ab ¯ ab b b State: 0 { 0 } a ¯ ¯ b [!0&!1] 1 [0&!1] 0 [!0&1] 3 [0&1] 2 ¯ ab State: 1 { 1 } 2 3 [!0&!1] 1 [0&!1] 0 [!0&1] 3 [0&1] 2 0 2 1 2 State: 2 { 0 2 } ab [!0&!1] 1 [0&!1] 0 [!0&1] 3 [0&1] 2 State: 3 { 1 2 } ¯ ab a ¯ ab ¯ b [!0&!1] 1 [0&!1] 0 [!0&1] 3 [0&1] 2 --END-- ab 3 / 4

  9. A Streett automaton for G F a → G F b Fin ( 0 ) ∨ Inf ( 1 ) HOA: v1 a ¯ a ¯ ¯ b b States: 4 Start: 0 a ¯ ¯ b AP: 2 "a" "b" 0 1 acc-name: Streett 1 0 4 a ¯ Acceptance: 2 ¯ b Fin( 0 )|Inf( 1 ) ¯ ab --BODY-- a ¯ a ¯ ¯ ¯ ab ¯ ab b b State: 0 { 0 } a ¯ ¯ b [!0&!1] 1 [0&!1] 0 [!0&1] 3 [0&1] 2 ¯ ab State: 1 2 3 [!0&!1] 1 [0&!1] 0 [!0&1] 3 [0&1] 2 0 1 1 State: 2 { 0 1 } ab [!0&!1] 1 [0&!1] 0 [!0&1] 3 [0&1] 2 State: 3 { 1 } ¯ ab a ¯ ab ¯ b [!0&!1] 1 [0&!1] 0 [!0&1] 3 [0&1] 2 --END-- ab 3 / 4

  10. Tool Support http://adl.github.io/hoaf/support.html ltl2dstar 0.5.3 input BA, output DRA or DSA ltl3ba 1.1.2 output BA, TGBA, or VWAA ltl3dra 0.2.2 output DRA, TGDRA or MMAA Rabinizer 3.1 output DRA, TDRA, GDRA, or TGDRA PRISM 4.3 input deterministic automata for probabilistic model checking; (generalized) Rabin for MDP; any acceptance for CTMC/DTMC Spot 1.99.2 (tool suite) can input/output anything that is not alternating; can convert from never claims or LBTT; has several transformations jhoafparser and cpphoafparser two parsers with pretty printers, and convenient transformations 4 / 4

Recommend


More recommend