the equality of the homogeneous and the gabor wave front
play

The equality of the homogeneous and the Gabor wave front set Patrik - PowerPoint PPT Presentation

The equality of the homogeneous and the Gabor wave front set Patrik Wahlberg Universit` a di Torino Joint work with Ren e Schulz, G ottingen XXXIII Convegno Nazionale di Analisi Armonica 1720 giugno 2013 Alba Plan of the talk P.


  1. The equality of the homogeneous and the Gabor wave front set Patrik Wahlberg Universit` a di Torino Joint work with Ren´ e Schulz, G¨ ottingen XXXIII Convegno Nazionale di Analisi Armonica 17–20 giugno 2013 Alba

  2. Plan of the talk P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 2 / 18

  3. Plan of the talk A brief reveiw of the C ∞ wave front set WF ( u ) of u ∈ D ′ ( R d ) P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 2 / 18

  4. Plan of the talk A brief reveiw of the C ∞ wave front set WF ( u ) of u ∈ D ′ ( R d ) The Gabor (global) wave front set WF G ( u ) of u ∈ S ′ ( R d ) (H¨ ormander 1991) P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 2 / 18

  5. Plan of the talk A brief reveiw of the C ∞ wave front set WF ( u ) of u ∈ D ′ ( R d ) The Gabor (global) wave front set WF G ( u ) of u ∈ S ′ ( R d ) (H¨ ormander 1991) The homogeneous wave front set HWF ( u ) (Nakamura 2005) P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 2 / 18

  6. Plan of the talk A brief reveiw of the C ∞ wave front set WF ( u ) of u ∈ D ′ ( R d ) The Gabor (global) wave front set WF G ( u ) of u ∈ S ′ ( R d ) (H¨ ormander 1991) The homogeneous wave front set HWF ( u ) (Nakamura 2005) Main result: WF G ( u ) = HWF ( u ) for u ∈ S ′ ( R d ) P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 2 / 18

  7. Plan of the talk A brief reveiw of the C ∞ wave front set WF ( u ) of u ∈ D ′ ( R d ) The Gabor (global) wave front set WF G ( u ) of u ∈ S ′ ( R d ) (H¨ ormander 1991) The homogeneous wave front set HWF ( u ) (Nakamura 2005) Main result: WF G ( u ) = HWF ( u ) for u ∈ S ′ ( R d ) A tool for the proof: global semiclassical pseudo-differential calculus P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 2 / 18

  8. The C ∞ wave front set P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 3 / 18

  9. The C ∞ wave front set Precursor by M. Sato 1969 (hyperfunctions) P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 3 / 18

  10. The C ∞ wave front set Precursor by M. Sato 1969 (hyperfunctions) Introduced by H¨ ormander 1971 in “Fourier integral operators I” P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 3 / 18

  11. The C ∞ wave front set Precursor by M. Sato 1969 (hyperfunctions) Introduced by H¨ ormander 1971 in “Fourier integral operators I” u ∈ D ′ ( R d ) , x 0 ∈ R d , ξ 0 ∈ R d \ { 0 } . P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 3 / 18

  12. The C ∞ wave front set Precursor by M. Sato 1969 (hyperfunctions) Introduced by H¨ ormander 1971 in “Fourier integral operators I” u ∈ D ′ ( R d ) , x 0 ∈ R d , ξ 0 ∈ R d \ { 0 } . c ( R d ) , ∃ Γ ⊆ R d \ { 0 } conic, open, and ∈ WF ( u ) if ∃ ϕ ∈ C ∞ ( x 0 , ξ 0 ) / ξ 0 ∈ Γ , such that ϕ ( x 0 ) � = 0 and � ξ � N | F ( u ϕ )( ξ ) | < ∞ sup ∀ N ≥ 0 ξ ∈ Γ where � ξ � = ( 1 + | ξ | 2 ) 1 / 2 P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 3 / 18

  13. The C ∞ wave front set Precursor by M. Sato 1969 (hyperfunctions) Introduced by H¨ ormander 1971 in “Fourier integral operators I” u ∈ D ′ ( R d ) , x 0 ∈ R d , ξ 0 ∈ R d \ { 0 } . c ( R d ) , ∃ Γ ⊆ R d \ { 0 } conic, open, and ∈ WF ( u ) if ∃ ϕ ∈ C ∞ ( x 0 , ξ 0 ) / ξ 0 ∈ Γ , such that ϕ ( x 0 ) � = 0 and � ξ � N | F ( u ϕ )( ξ ) | < ∞ sup ∀ N ≥ 0 ξ ∈ Γ where � ξ � = ( 1 + | ξ | 2 ) 1 / 2 x 0 ξ 0 Γ Figure: x -space and the dual ξ -space P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 3 / 18

  14. Basic properties of the C ∞ wave front set P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 4 / 18

  15. Basic properties of the C ∞ wave front set u ∈ D ′ ( R d ) , π ( WF ( u )) = sing supp ( u ) , π ( x , ξ ) = x P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 4 / 18

  16. Basic properties of the C ∞ wave front set u ∈ D ′ ( R d ) , π ( WF ( u )) = sing supp ( u ) , π ( x , ξ ) = x u ∈ C ∞ WF ( u ) = ∅ ⇐ ⇒ P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 4 / 18

  17. Basic properties of the C ∞ wave front set u ∈ D ′ ( R d ) , π ( WF ( u )) = sing supp ( u ) , π ( x , ξ ) = x u ∈ C ∞ WF ( u ) = ∅ ⇐ ⇒ ormander classes : m ∈ R , 0 ≤ δ < ρ ≤ 1 H¨ | ∂ α x ∂ β ξ a ( x , ξ ) | ≤ C α,β � ξ � m + δ | α |− ρ | β | , a ∈ S m x , ξ ∈ R d if ρ,δ P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 4 / 18

  18. Basic properties of the C ∞ wave front set u ∈ D ′ ( R d ) , π ( WF ( u )) = sing supp ( u ) , π ( x , ξ ) = x u ∈ C ∞ WF ( u ) = ∅ ⇐ ⇒ ormander classes : m ∈ R , 0 ≤ δ < ρ ≤ 1 H¨ | ∂ α x ∂ β ξ a ( x , ξ ) | ≤ C α,β � ξ � m + δ | α |− ρ | β | , a ∈ S m x , ξ ∈ R d if ρ,δ ρ,δ : ( x 0 , ξ 0 ) ∈ ( R d × ( R d \ 0 )) \ char ( a ) if Characteristic set of a ∈ S m | a ( x , ξ ) | ≥ ε � ξ � m , ( x , ξ ) ∈ Γ , | ξ | ≥ A ≥ 0 , ε > 0 , where ( x 0 , ξ 0 ) ∈ Γ , and Γ is open and conic in ξ : ( x , ξ ) ∈ Γ , t > 0 ⇒ ( x , t ξ ) ∈ Γ P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 4 / 18

  19. Basic properties of the C ∞ wave front set P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 5 / 18

  20. Basic properties of the C ∞ wave front set ρ,δ : ( x 0 , ξ 0 ) ∈ ( R d × ( R d \ 0 )) \ µ supp ( a ) if Microsupport of a ∈ S m x ∂ β | ∂ α ξ a ( x , ξ ) | ≤ C α,β, M � ξ � − M , M ≥ 0 , ( x , ξ ) ∈ Γ where Γ is open, conic in ξ , and ( x 0 , ξ 0 ) ∈ Γ . P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 5 / 18

  21. Basic properties of the C ∞ wave front set ρ,δ : ( x 0 , ξ 0 ) ∈ ( R d × ( R d \ 0 )) \ µ supp ( a ) if Microsupport of a ∈ S m x ∂ β | ∂ α ξ a ( x , ξ ) | ≤ C α,β, M � ξ � − M , M ≥ 0 , ( x , ξ ) ∈ Γ where Γ is open, conic in ξ , and ( x 0 , ξ 0 ) ∈ Γ . Weyl quantization: a ∈ S m ρ,δ , f ∈ S ( R d ) �� � x + y � a w ( x , D ) f ( x ) = ( 2 π ) − d R 2 d e i � x − y ,ξ � a , ξ f ( y ) dy d ξ 2 P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 5 / 18

  22. Basic properties of the C ∞ wave front set ρ,δ : ( x 0 , ξ 0 ) ∈ ( R d × ( R d \ 0 )) \ µ supp ( a ) if Microsupport of a ∈ S m x ∂ β | ∂ α ξ a ( x , ξ ) | ≤ C α,β, M � ξ � − M , M ≥ 0 , ( x , ξ ) ∈ Γ where Γ is open, conic in ξ , and ( x 0 , ξ 0 ) ∈ Γ . Weyl quantization: a ∈ S m ρ,δ , f ∈ S ( R d ) �� � x + y � a w ( x , D ) f ( x ) = ( 2 π ) − d R 2 d e i � x − y ,ξ � a , ξ f ( y ) dy d ξ 2 Theorem 1 (Inclusions) If a ∈ S m ρ,δ and u ∈ S ′ ( R d ) then WF ( a w ( x , D ) u ) ⊆ WF ( u ) ∩ µ supp ( a ) WF ( a w ( x , D ) u ) ∪ char ( a ) WF ( u ) ⊆ P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 5 / 18

  23. Basic properties of the C ∞ wave front set Microlocal characterization: � WF ( u ) = char ( a ) a ∈ S 0 1 , 0 : a w ( x , D ) u ∈ C ∞ P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 6 / 18

  24. The Gabor wave front set P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 7 / 18

  25. The Gabor wave front set Introduced by H¨ ormander in Quadratic hyperbolic operators , Microlocal Analysis and Applications, LNM vol. 1495, L. Cattabriga, L. Rodino (Eds.), pp. 118–160, 1991 P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 7 / 18

  26. The Gabor wave front set Introduced by H¨ ormander in Quadratic hyperbolic operators , Microlocal Analysis and Applications, LNM vol. 1495, L. Cattabriga, L. Rodino (Eds.), pp. 118–160, 1991 Shubin symbol classes : m ∈ R , a ∈ G m if x ∂ β | ∂ α ξ a ( x , ξ ) | ≤ C α,β � ( x , ξ ) � m −| α |−| β | , ( x , ξ ) ∈ R 2 d P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 7 / 18

  27. The Gabor wave front set Introduced by H¨ ormander in Quadratic hyperbolic operators , Microlocal Analysis and Applications, LNM vol. 1495, L. Cattabriga, L. Rodino (Eds.), pp. 118–160, 1991 Shubin symbol classes : m ∈ R , a ∈ G m if x ∂ β | ∂ α ξ a ( x , ξ ) | ≤ C α,β � ( x , ξ ) � m −| α |−| β | , ( x , ξ ) ∈ R 2 d A noncharacteristic point for a ∈ G m is a point in the phase space z 0 = ( x 0 , ξ 0 ) ∈ T ∗ ( R d ) \ { ( 0 , 0 ) } such that | a ( x , ξ ) | ≥ ε � ( x , ξ ) � m , ( x , ξ ) ∈ Γ , | ( x , ξ ) | ≥ A where A , ε > 0 and Γ ⊆ T ∗ ( R d ) \ { ( 0 , 0 ) } is an open conic set such that z 0 ∈ Γ P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 7 / 18

  28. ξ Γ z 0 x Figure: A cone in the phase space ( x , ξ ) P. Wahlberg (Torino) Homogeneous and Gabor wave front set XXXIII Conv. Naz. A.A. 8 / 18

Recommend


More recommend