Federal University of Santa Catarina Grupo de Mecânica Aplicada e Computacional The Element-Free Galerkin Method applied on Polymeric Foams Author: Guilherme da Costa Machado Advisor: Marcelo Krajnc Alves, Ph.D. Co-Advisor: Rodrigo Rossi, Dr.Eng. Florianópolis - Brazil September, 2006
Overview The Element-Free Celular Solids Galerkin Method Introduction Moved List Square Characteristics Approximation Mechanical Properties Weight Function definition Models examples Imposition of Essential Methodology Boundary Conditions Unilateral Contact and Finite Strain Elastoplastic Friction Formulation formulation Problem definition Kinematics of deformation Imposition of the Contact and The concept of conjugated pairs Friction terms The Elastoplastic model General Algorithm Strong, Weak and Incremental Examples (EFG) formulations Solution Procedure Examples (FEM) Conclusions 2
Cellular solids Introduction Typically used in energy absorption structures. Applications areas: • Automotive/Transport industry; • Aerospace industry; • Packing industry; • Construction industry. Mechanical X low density. 3
Cellular solids 4
Cellular solids Relative density ∗ / m Very low = 0,001; Conventional = 0,05 to 0,20; Transition value 0,3 treated as a solid with isolated pores. Types Polymeric Metallic (aluminum, cooper, nickel, titanium and zinc) Ceramic (carbon) Natural (wood, cork and coral structures) 5
Mechanical Properties GIBSON & ASHBY(1997) Sólidos celulares 6
Cellular solids Elastoplastic foam behaviour under compression Densification process Stress lim Mechanical Properties 1 GIBSON & ASHBY(1997) Cellular walls/struts buckling plateau Linear elastic flexion Strain 7
Cellular solids Modeling Approaches Periodical Models (GIBSON & ASHBY) • Dependence of the geometrical idealization; • Considers the local cell characteristics; • Limited applications; • Isotropy and cellular interaction, in the majority of the cases, are not periodic phenomenon. Random models (ROBERTS,GARBOCZIA e BRYDON) • Voronoi tessellation and Gaussian random field; • Problems to define the RVE and the coordinate number; • Problems at the micro tomography correlation; • Border effects; • Self-contact densification process involves a huge computational cost; • Explicit solver. 8
Cellular solids Elastoplastic model for polymeric foams Methodology Finite Stains Algorithm; Total Lagrange Description; Rotated Kirchoff stress ; Hencky Logarithmic strain measure; Volumetric hardening Law; Finite Element Method - FEM; Element Free Galerkin Method - EFG; Contact formulation ( Signorini hypothesis); Friction formulation (regularized Coulomb’s law); 9
Finite Strain Elastoplastic Formulation Required formulations Stress/Strain elastic relation – an elastic law; Yield function - indicating the stress level to start the plastic flow; Stress/Strain plastic relation – material hardening/softening law; 10
Finite Strain Elastoplastic Formulation Movement, strain gradient and the Kinematics of deformation multiplicative decomposition j = = + ( , ) X t x X u ¶ x = j = F ( , ) X t X ¶ X = e p F F F Polar decomposition, Cauchy-Green tensor and the log strain measure p = p p e = e e F R U F R U e e = U C T e = e e C F F ( ) e = e E ln U 11
Finite Strain Elastoplastic Formulation Hill’s Principle: work rate invariability 1 1 1 1 1 = s ⋅ = t ⋅ = ⋅ = ⋅ = t ⋅ e D D P F S C E , r r r r r 2 o o o o Spectral decomposition T e e e = C F F 3 å e = l Ä C ( l l ) i i i = i 1 3 å e = l Ä U ( l l ) i i i i = 1 3 1 å e = l Ä E ln( )( l l ) i i i 2 = i 1 12
Finite Strain Elastoplastic Formulation GIBSON & ASHBY(1997) Kirchoff rotated stress e T e t t t s = ( R ) ( R ) = det( ) F where Hyperelastic Hencky’s model t = ( r * ) e E æ ö 2 ÷ ç * * * * ( r ) = m r ( ) + ( r )- m r ( ) ( Ä ) 2 K I I ÷ D I ç ÷ ç è ø 3 * * r = [ ] r det F o 1 ( ) = d d + d d I ijkl ik jl il jk 2 g ( ) ( ) * * r = r E c E ( Ä ) = d d I I M ij kl ijkl 13
2 æ ö é ù é ù - o + o p p p p ÷ 2 ç 2 2 = + b ( , ) q p q p = 2 + a 2 - ê ú - a ê ú £ ( , ) q p q p c t ÷ c t 0 ç ÷ ç ÷ n ê ú ê ú ( ) è ø 2 2 ë û ë û p Yield Function and the Plastic Flow Potential ( ) a e p e p , v a p = V p ( ) e p H t c p v ö æ p L ÷ ç ( ) ( ) t e p = t o + e p e p = - ÷ ( ) ( ) H ln = o + e p e p = - p ç p p H ln J ÷ ç ÷ y a y a a ç c c p v v è L ø o 14
Return Mapping Algorithm Elastic Prediction p = F 0 æ ö ¶ G ÷ ç p = D l ÷ p End F exp F ç ÷ ç ÷ n + 1 ç n ¶ t è ø teste p = p F F + n 1 + n 1 n ìé ù ï - 1 teste ( ) e = p F F F 2 ïê kb D l ú + - teste 1 p p ïê n + 1 n + 1 n ) ( ú ïë n + 1 n + 1 p , q G û ï é ù + + n 1 n 1 * r 0 ï ê ú * ïé r = o ù ï ê ú [ ] ïê n + 1 m D l 3 det F ú + - teste = ê ú 1 q q 0 íê n + 1 ) ( ú ï n + 1 n + 1 ê ú p , q G ë û ï + + n 1 n 1 ( ) T ê ú ï 0 teste teste teste e = e e C F F ï ê ú ⋅ = ⋅ ) ( teste ë û ( ) ( ) ï n + 1 n + 1 n + 1 D l q , p , n + 1 n + 1 ï n + 1 n + 1 ï 1 ln ï ( ) ï teste teste î e e = E C n + 1 n + 1 2 teste teste D l in terms of p q yes + + n 1 n 1 teste * e t = ( r ) E D + + n 1 n 1 D l > where 0 é ù teste teste * e p = - K ( r ) tr E ê ú teste teste e £ ë û ( q , p , ) 0 + + + p teste n 1 n 1 n 1 + + n 1 n 1 v + n 1 3 Plastic Corrector teste teste teste = t D ⋅ t D q n + 1 n + 1 n + 1 2 no 15
Finite Strain Elastoplastic Formulation The global problem value Strong formulation: reference configuration • For each , determine that it is solution of u X t ( , ) t ∈ t o , t f - r = W div ( , ) X t ( X b X t ) ( , ) 0 em P o o = G t P ( , ) X t N X t ( , ) t X t ( , ) em o = G u u X t ( , ) u X ( ) em o 16
Finite Strain Elastoplastic Formulation The global problem value Weak formulation: reference configuration u + Î • Find such that n 1 ( ) d = " d Î u 1 ; u 0 u F + n where ( ) ( ) ò ò ò d = ⋅ d W - r ⋅ d W - ⋅ d u ; u P u u d b u d t u dA F n + 1 n + 1 o o n + 1 o n + 1 o X t W W G o o o { } = Î 1 ( ) W = G u u u W , u u em i p o { } = d d Î 1 ( ) W d = G u u u W , u 0 em i p o 17
Finite Strain Elastoplastic Formulation Local Linearization ( Newton’s Method) ( ) ⋅ ⋅ , • Considers as being enough regular F ( ) ( ) + k 1 d = k + D k d = " d Î u ; u u u ; u 0 u F F n + 1 n + 1 n + 1 k u + and expanding by Taylor in terms of , we obtain n 1 ( ) ( ) ( ) é ù k + D k d k d + k d D k u u ; u u ; u D u ; u u F F F ë û + + + + + n 1 n 1 n 1 n 1 n 1 ( ) ( ) ( ) é ù ò k d D k = k ⋅ D k ⋅ d W D u ; u u u u u d F ë û n + 1 n + 1 n + 1 n + 1 o X X W o ¶ ¶ t P é ( ) ù ij ip - - - k = = 1 - t 1 1 u F F F ê ú ë û n + 1 jp ip jk lp ¶ ¶ F F ijkl kl k kl u + n 1 18
Recommend
More recommend