Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM The Direct Stiffness Method: Assembly and Solution IFEM Ch 3 – Slide 1
Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM The Direct Stiffness Method (DSM) Steps (recalled for convenience) Disconnection Breakdown Localization Member (Element) Formation (Chapter 2) Globalization Merge Assembly & Application of BCs Solution Solution (Chapter 3) Recovery of Derived Quantities post-processing processing conceptual steps steps steps IFEM Ch 3 – Slide 2
Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Globalization Step: Displacement Transformation u yj u yj ¯ u x j ¯ y ¯ u x j x ¯ j y u yi u xi ¯ ϕ u yi ¯ x u xi i Node displacements transform as u xi = u xi c + u yi s , ¯ u yi = − u xi s + u yi c γ ¯ u x j = u x j c + u yj s , u yj = − u x j s + u yj c γ ¯ ¯ in which c = cos ϕ s = sin ϕ IFEM Ch 3 – Slide 3
Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Globalization Step: Displacement Transformation (cont'd) In matrix form u xi c s 0 0 u xi ¯ u yi ¯ − s c 0 0 u yi = 0 0 u x j ¯ c s u x j Note: u yj ¯ 0 0 − s c u yj global on RHS, local on LHS u ( e ) = T ( e ) u ( e ) or ¯ IFEM Ch 3 – Slide 4
Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Globalization Step: Force Transformation f yj ¯ f yj ¯ f x j f x j j y f yi ¯ f yi ¯ ϕ f xi x f xi i Node forces transform as ¯ f xi f xi c − s 0 0 Note: ¯ f yi f yi s c 0 0 global on LHS, = ¯ f x j 0 0 c − s f x j local on RHS ¯ f yj 0 0 s c f yj ( e ) f ( e ) = ( T ( e ) ) T ¯ f IFEM Ch 3 – Slide 5
Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Globalization: Congruential Transformation of Element Stiffness Matrices ( e ) ( e ) ¯ ¯ u ( e ) ¯ f K = f ( e ) = ( T ( e ) ) T f ( e ) u ( e ) = T ( e ) u ( e ) ¯ ¯ Exercise 3.1 ) T ¯ ( e ) T K ( e ) = ( T ( e ) ) ( e K c 2 − c 2 sc − sc K ( e ) = E ( e ) A ( e ) s 2 − s 2 sc − sc − c 2 c 2 L ( e ) − sc sc − s 2 s 2 − sc sc IFEM Ch 3 – Slide 6
Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM The Example Truss - FEM Model f y 3 , u y 3 Recall from Chapter 2 f x 3 , u x 3 3 √ L ( 3 ) = 10 2 √ y E ( 3 ) A ( 3 ) = 200 2 L ( 2 ) = 10 ( 3 ) ( 2 ) E ( 2 ) A ( 2 ) = 50 x f x 1 , u x 1 f x 2 , u x 2 1 2 ( 1 ) L ( 1 ) = 10 E ( 1 ) A ( 1 ) = 100 f y 2 , u y 2 f y 1 , u y 1 IFEM Ch 3 – Slide 7
Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Globalized Element Stiffness Equations for Example Truss f ( 1 ) u ( 1 ) 1 0 − 1 0 x 1 x 1 f ( 1 ) u ( 1 ) 0 0 0 0 y 1 y 1 = 10 f ( 1 ) u ( 1 ) − 1 0 1 0 x 2 x 2 f ( 1 ) u ( 1 ) 0 0 0 0 y 2 y 2 f ( 2 ) u ( 2 ) 0 0 0 0 x 2 x 2 f ( 2 ) u ( 2 ) 0 1 0 − 1 y 2 y 2 = 5 f ( 2 ) u ( 2 ) 0 0 0 0 x 3 x 3 f ( 2 ) u ( 2 ) 0 − 1 0 1 y 3 y 3 f ( 3 ) u ( 3 ) 0 . 5 0 . 5 − 0 . 5 − 0 . 5 x 1 x 1 f ( 3 ) u ( 3 ) 0 . 5 0 . 5 − 0 . 5 − 0 . 5 y 1 y 1 = 20 f ( 3 ) u ( 3 ) − 0 . 5 − 0 . 5 0 . 5 0 . 5 x 3 x 3 f ( 3 ) u ( 3 ) − 0 . 5 − 0 . 5 0 . 5 0 . 5 y 3 y 3 IFEM Ch 3 – Slide 8
Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Assembly Rules 1. Compatibility : The joint displacements of all members meeting at a joint must be the same 2. Equilibrium : The sum of forces exerted by all members that meet at a joint must balance the external force applied to that joint. To apply these rules in assembly by hand , it is convenient to augment the element stiffness equations as shown for the example truss in the next slide. IFEM Ch 3 – Slide 9
Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Expanded Element Stiffness Equations of Example Truss f ( 1 ) u ( 1 ) 10 0 − 10 0 0 0 x 1 x 1 f ( 1 ) u ( 1 ) 0 0 0 0 0 0 y 1 y 1 f ( 1 ) u ( 1 ) − 10 0 10 0 0 0 x 2 x 2 = f ( 1 ) u ( 1 ) 0 0 0 0 0 0 y 2 y 2 f ( 1 ) 0 0 0 0 0 0 u ( 1 ) x 3 x 3 0 0 0 0 0 0 f ( 1 ) u ( 1 ) y 3 y 3 f ( 2 ) u ( 2 ) 0 0 0 0 0 0 x 1 x 1 f ( 2 ) u ( 2 ) 0 0 0 0 0 0 y 1 y 1 f ( 2 ) u ( 2 ) 0 0 0 0 0 0 x 2 x 2 = f ( 2 ) u ( 2 ) 0 0 0 5 0 − 5 y 2 y 2 f ( 2 ) 0 0 0 0 0 0 u ( 2 ) x 3 x 3 0 0 0 − 5 0 5 f ( 2 ) u ( 2 ) y 3 y 3 f ( 3 ) u ( 3 ) 10 10 0 0 − 10 − 10 x 1 x 1 f ( 3 ) u ( 3 ) 10 10 0 0 − 10 − 10 y 1 y 1 f ( 3 ) u ( 3 ) 0 0 0 0 0 0 x 2 x 2 = f ( 3 ) u ( 3 ) 0 0 0 0 0 0 y 2 y 2 f ( 3 ) − 10 − 10 0 0 10 10 u ( 3 ) x 3 x 3 − 10 − 10 0 0 10 10 f ( 3 ) u ( 3 ) y 3 y 3 IFEM Ch 3 – Slide 10
Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Reconnecting Members by Enforcing Compatibility Rule f ( 1 ) u x 1 10 0 − 10 0 0 0 x 1 To apply compatibility, drop f ( 1 ) u y 1 0 0 0 0 0 0 y 1 the member index from the f ( 1 ) u x 2 − 10 0 10 0 0 0 x 2 nodal displacements = f ( 1 ) 0 0 0 0 0 0 u y 2 y 2 f ( 1 ) 0 0 0 0 0 0 u x 3 x 3 0 0 0 0 0 0 f ( 1 ) u y 3 y 3 f ( 1 ) K ( 1 ) u = f ( 2 ) u x 1 0 0 0 0 0 0 x 1 f ( 2 ) u y 1 0 0 0 0 0 0 y 1 f ( 2 ) 0 0 0 0 0 0 u x 2 x 2 = f ( 2 ) K ( 2 ) = f ( 2 ) u 0 0 0 5 0 − 5 u y 2 y 2 0 0 0 0 0 0 f ( 2 ) u x 3 x 3 0 0 0 − 5 0 5 f ( 2 ) u y 3 y 3 f ( 3 ) K ( 3 ) f ( 3 ) u = u x 1 10 10 0 0 − 10 − 10 x 1 f ( 3 ) u y 1 10 10 0 0 − 10 − 10 y 1 f ( 3 ) 0 0 0 0 0 0 u x 2 x 2 = f ( 3 ) 0 0 0 0 0 0 u y 2 y 2 − 10 − 10 0 0 10 10 f ( 3 ) u x 3 x 3 − 10 − 10 0 0 10 10 f ( 3 ) u y 3 y 3 IFEM Ch 3 – Slide 11
Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Next, Apply Equilibrium Rule f 3 3 3 f ( 3 ) − f ( 3 ) 3 − f ( 2 ) f ( 2 ) 3 3 3 (3) (2) Be careful with + directions of internal forces! Applying this to all joints (see Notes): f = f + f + f (2) (3) (1) IFEM Ch 3 – Slide 12
Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Forming the Master Stiffness Equations through Equilibrium Rule f = f + f + f = (K + K + K ) u = K u (2) (2) (3) (1) (3) (1) f x 1 20 10 − 10 0 − 10 − 10 u x 1 f y 1 10 10 0 0 − 10 − 10 u y 1 f x 2 − 10 0 10 0 0 0 u x 2 = f y 2 0 0 0 5 0 − 5 u y 2 f x 3 − 10 − 10 0 0 10 10 u x 3 f y 3 − 10 − 10 0 − 5 10 15 u y 3 IFEM Ch 3 – Slide 13
Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Applying Support and Loading Boundary Conditions to Example Truss 1 3 2 Displacement BCs: u x 1 = u y 1 = u y 2 = 0 Force BCs: f x 2 = 0 , f x 3 = 2 , f y 3 = 1 1 2 �� �� �� �� IFEM Ch 3 – Slide 14
Recommend
More recommend