the continuous calculus
play

The Continuous -Calculus An Algebra for Biochemical Modelling - PowerPoint PPT Presentation

Introduction The Calculus Example Conclusions The Continuous -Calculus An Algebra for Biochemical Modelling Marek Kwiatkowski School of Informatics University of Edinburgh 14 Oct 2008, CMSB joint work with Ian Stark M. Kwiatkowski, I.


  1. Introduction The Calculus Example Conclusions The Continuous π -Calculus An Algebra for Biochemical Modelling Marek Kwiatkowski School of Informatics University of Edinburgh 14 Oct 2008, CMSB joint work with Ian Stark M. Kwiatkowski, I. Stark The Continuous π -Calculus

  2. Introduction The Calculus Example Conclusions Outline Introduction: ODEs and Process Algebras 1 The Continuous π -Calculus 2 Example: the KaiABC circadian clock 3 Future work and conclusions 4 M. Kwiatkowski, I. Stark The Continuous π -Calculus

  3. Introduction The Calculus Example Conclusions Ordinary Differential Equations k 1 k 2 S + E P + E C k − 1 k 3 ∅ P M. Kwiatkowski, I. Stark The Continuous π -Calculus

  4. Introduction The Calculus Example Conclusions Ordinary Differential Equations k 1 k 2 d [ S ] S + E P + E C = − k 1 [ S ][ E ] + k − 1 [ C ] k − 1 dt d [ E ] = − k 1 [ S ][ E ] + k − 1 [ C ] + k 2 [ C ] dt d [ C ] = k 1 [ S ][ E ] − k − 1 [ C ] − k 2 [ C ] dt k 3 d [ P ] = k 2 [ C ] − k 3 [ P ] ∅ P dt M. Kwiatkowski, I. Stark The Continuous π -Calculus

  5. Introduction The Calculus Example Conclusions Ordinary Differential Equations k 1 k 2 d [ S ] S + E P + E C = − k 1 [ S ][ E ] + k − 1 [ C ] k − 1 dt d [ E ] = − k 1 [ S ][ E ] + k − 1 [ C ] + k 2 [ C ] dt d [ C ] = k 1 [ S ][ E ] − k − 1 [ C ] − k 2 [ C ] dt k 3 d [ P ] = k 2 [ C ] − k 3 [ P ] ∅ P dt M. Kwiatkowski, I. Stark The Continuous π -Calculus

  6. Introduction The Calculus Example Conclusions Process Algebras k 1 k 2 S + E P + E C k − 1 k 3 ∅ P M. Kwiatkowski, I. Stark The Continuous π -Calculus

  7. Introduction The Calculus Example Conclusions Process Algebras k 1 k 2 △ S + E P + E C = a ( x , y ) . ( x . S + y . P ) S k − 1 △ = ( ν u )( ν r ) a ( u , r ) . ( u . E + r . E ) E △ = τ. 0 P k 3 S | ... | S | E | ... | E ∅ P M. Kwiatkowski, I. Stark The Continuous π -Calculus

  8. Introduction The Calculus Example Conclusions Process Algebras k 1 k 2 △ S + E P + E C = a ( x , y ) . ( x . S + y . P ) S k − 1 △ = ( ν u )( ν r ) a ( u , r ) . ( u . E + r . E ) E △ = τ. 0 P k 3 S | ... | S | E | ... | E ∅ P M. Kwiatkowski, I. Stark The Continuous π -Calculus

  9. Introduction The Calculus Example Conclusions ODEs vs PAs ODEs: PAs: M. Kwiatkowski, I. Stark The Continuous π -Calculus

  10. Introduction The Calculus Example Conclusions ODEs vs PAs ODEs: PAs: continuous discrete M. Kwiatkowski, I. Stark The Continuous π -Calculus

  11. Introduction The Calculus Example Conclusions ODEs vs PAs ODEs: PAs: continuous discrete deterministic non-deterministic/stochastic M. Kwiatkowski, I. Stark The Continuous π -Calculus

  12. Introduction The Calculus Example Conclusions ODEs vs PAs ODEs: PAs: continuous discrete deterministic non-deterministic/stochastic monolithic modular (compositional) M. Kwiatkowski, I. Stark The Continuous π -Calculus

  13. Introduction The Calculus Example Conclusions ODEs vs PAs ODEs: PAs: continuous discrete deterministic non-deterministic/stochastic monolithic modular (compositional) specify dynamics specify interactions M. Kwiatkowski, I. Stark The Continuous π -Calculus

  14. Introduction The Calculus Example Conclusions ODEs vs PAs ODEs: PAs: continuous discrete deterministic non-deterministic/stochastic monolithic modular (compositional) specify dynamics specify interactions very popular relatively unknown M. Kwiatkowski, I. Stark The Continuous π -Calculus

  15. Introduction The Calculus Example Conclusions Syntax: species and processes Species: A , B :: = 0 | π 1 . A 1 + · · · + π n . A n D ( � a ) | A | B | ( ν M ) A M. Kwiatkowski, I. Stark The Continuous π -Calculus

  16. Introduction The Calculus Example Conclusions Syntax: species and processes Species: Processes: A , B :: = 0 | π 1 . A 1 + · · · + π n . A n P , Q :: = c · A | P � Q c ∈ R ≥ 0 D ( � a ) | A | B | ( ν M ) A (thus P is an element of R S ) M. Kwiatkowski, I. Stark The Continuous π -Calculus

  17. Introduction The Calculus Example Conclusions Syntax: affinity networks Names represent protein interaction sites. b c k 1 k 2 k 4 k 5 k 3 f e a d An affinity network gives their interaction structure. M. Kwiatkowski, I. Stark The Continuous π -Calculus

  18. Introduction The Calculus Example Conclusions Semantics dP dt : immediate behaviour element of R S equivalent to an ODE system M. Kwiatkowski, I. Stark The Continuous π -Calculus

  19. Introduction The Calculus Example Conclusions Semantics dP dt : immediate behaviour ∂ P : interaction potential element of R S×C×N element of R S equivalent to a transition system equivalent to an ODE system M. Kwiatkowski, I. Stark The Continuous π -Calculus

  20. Introduction The Calculus Example Conclusions Semantics dP dt : immediate behaviour ∂ P : interaction potential element of R S×C×N element of R S equivalent to a transition system equivalent to an ODE system △ ∂ ( P � Q ) = ∂ P + ∂ Q d ( P � Q ) dP + dQ △ = + ∂ P � ∂ Q dt dt dt M. Kwiatkowski, I. Stark The Continuous π -Calculus

  21. Introduction The Calculus Example Conclusions Semantics dP dt : immediate behaviour ∂ P : interaction potential element of R S×C×N element of R S equivalent to a transition system equivalent to an ODE system △ ∂ ( P � Q ) = ∂ P + ∂ Q d ( P � Q ) dP + dQ △ = + ∂ P � ∂ Q dt dt dt △ 1 A → F � 1 B = Aff ( x , y )( � F · G � − � A � − � B � ) x y → G M. Kwiatkowski, I. Stark The Continuous π -Calculus

  22. Introduction The Calculus Example Conclusions Example: a simple chemical reaction network k 1 k 2 S + E P + E C k − 1 k 3 ∅ P M. Kwiatkowski, I. Stark The Continuous π -Calculus

  23. Introduction The Calculus Example Conclusions Example: a simple chemical reaction network k 1 k 2 △ S + E P + E C = a ( x , y ) . ( x . S + y . P ) S k − 1 △ = ( ν M ) b � u , r � . act . E E △ = τ @ k 3 . 0 P k 3 c E · E � c S · S ∅ P M. Kwiatkowski, I. Stark The Continuous π -Calculus

  24. Introduction The Calculus Example Conclusions Example: a simple chemical reaction network k 1 k 2 △ S + E P + E C = a ( x , y ) . ( x . S + y . P ) S k − 1 △ = ( ν M ) b � u , r � . act . E E △ = τ @ k 3 . 0 P k 3 c E · E � c S · S ∅ P u r a k − 1 k 2 k 1 act b M. Kwiatkowski, I. Stark The Continuous π -Calculus

  25. Introduction The Calculus Example Conclusions Example: a simple chemical reaction network k 1 k 2 △ S + E P + E C = a ( x , y ) . ( x . S + y . P ) S k − 1 △ = ( ν M ) b � u , r � . act . E E △ = τ @ k 3 . 0 P k 3 c E · E � c S · S ∅ P u r a k − 1 k 2 k 1 act b M. Kwiatkowski, I. Stark The Continuous π -Calculus

  26. Introduction The Calculus Example Conclusions The KaiABC circadian clock of Synechococcus elongatus k ps k ps k ps C 0 C 1 C 6 · · · b 0 f 6 ˜ ˜ ˜ C 0 C 1 C 6 · · · ˜ ˜ ˜ k dps k dps k dps M. Kwiatkowski, I. Stark The Continuous π -Calculus

  27. Introduction The Calculus Example Conclusions The model △ ( ν M i )( τ @ k ps . C i +1 + τ @ f i . ˜ C i = C i + τ @ k dps . C i − 1 + a i � act i � . ( u i . C i + r i . C i +1 )) ˜ △ τ @˜ k ps . ˜ C i +1 + τ @ b i . C i + τ @˜ k dps . ˜ C i − 1 + b i . b ′ . B ˜ C i = C i B ˜ △ τ @˜ k ps . B ˜ . (˜ C i | B | B )+ τ @˜ k dps . B ˜ a ′ . AB ˜ C i +1 + τ @ k Bb C i = C i − 1 +˜ a i . ˜ C i i AB ˜ △ τ @˜ k ps . AB ˜ C i +1 + τ @˜ k Ab . ( B ˜ C i | A | A )+ τ @˜ k dps . AB ˜ C i = C i − 1 i △ A = a ( x ) . x . A +˜ a . 0 △ B = b . 0 △ P = c A · A � c B · B � c C · C 0 · · · · · · · · · a 0 a 6 ˜ ˜ a 0 a 6 b 0 b 6 k Af k Bf ˜ 6 6 k Af k Bf ˜ k Af k Af 0 0 0 0 k vf k vf a ′ b ′ ˜ a ˜ b a M. Kwiatkowski, I. Stark The Continuous π -Calculus

  28. Introduction The Calculus Example Conclusions The model: no autonomous phosphorylation △ ( ν M i )( τ @ k ps . C i +1 + τ @ f i . ˜ C i = C i + τ @ k dps . C i − 1 + a i � act i � . ( u i . C i + r i . C i +1 )) ˜ △ τ @˜ k ps . ˜ C i +1 + τ @ b i . C i + τ @˜ k dps . ˜ C i − 1 + b i . b ′ . B ˜ C i = C i B ˜ △ τ @˜ k ps . B ˜ . (˜ C i | B | B )+ τ @˜ k dps . B ˜ a ′ . AB ˜ C i +1 + τ @ k Bb C i = C i − 1 +˜ a i . ˜ C i i AB ˜ △ τ @˜ k ps . AB ˜ C i +1 + τ @˜ k Ab . ( B ˜ C i | A | A )+ τ @˜ k dps . AB ˜ C i = C i − 1 i △ A = a ( x ) . x . A +˜ a . 0 △ B = b . 0 △ P = c A · A � c B · B � c C · C 0 · · · · · · · · · a 0 a 6 ˜ ˜ a 0 a 6 b 0 b 6 k Af k Bf ˜ 6 6 k Af k Bf ˜ k Af k Af 0 0 0 0 k vf k vf a ′ b ′ ˜ a ˜ b a M. Kwiatkowski, I. Stark The Continuous π -Calculus

  29. Introduction The Calculus Example Conclusions The model: no autonomous phosphorylation M. Kwiatkowski, I. Stark The Continuous π -Calculus

Recommend


More recommend