the bimodal formation time distribution of infall dark
play

The Bimodal Formation Time Distribution of Infall Dark Matter Halos - PowerPoint PPT Presentation

The Bimodal Formation Time Distribution of Infall Dark Matter Halos and Its Effect on Galaxies Jingjing Shi KIAA, Peking University In collaboration with: Huiyuan Wang (USTC), Houjun Mo (UMass & THU), Lizhi Xie (TJNU), Ravi K.


  1. The Bimodal Formation Time Distribution of Infall Dark Matter Halos and Its Effect on Galaxies Jingjing Shi 史晶晶 KIAA, Peking University In collaboration with: Huiyuan Wang (USTC), Houjun Mo (UMass & THU), Lizhi Xie (TJNU), Ravi K. Sheth (UPenn), Xiaoyu Wang (USTC), Andrea Lapi (SISSA) July 2-6, ICTP Jingjing Shi, KIAA, PKU

  2. Motivation Formation time distribution of subhalos: Subclump mass: Infall Halos Parent mass: Main Trunk Lacey & Cole 1993 Sheth 2003

  3. Motivation A. Does subhalo share a similar accretion history as the host halo? B. What is the pre-accretion phase of subhalo looks like? and How is it related with the galaxy properties lying inside? Satellite Quenching: Infall Halos Main Trunk Lacey & Cole 1993 Wetzel et. al. 2013

  4. Merger trees and simulations: July 2-6, ICTP Jingjing Shi, KIAA, PKU

  5. 7 2 . 0 10 11 < M 0 < 10 11 . 5 7 < z peak < 7 . 5 10 12 < M 0 < 10 12 . 5 1 . 5 5 < z peak < 5 . 5 6 10 13 < M 0 < 10 13 . 5 3 < z peak < 3 . 5 10 14 < M 0 < 10 14 . 5 1 . 0 2 < z peak < 2 . 5 5 1 . 4 < z peak < 1 . 5 0 . 5 0 . 9 < z peak < 1 1 . 4 < z peak < 1 . 5 4 P ( a nf ) 0 . 4 < z peak < 0 . 5 0 . 0 0 < z peak < 0 . 1 Young 3 . 0 3 10 10 < M peak < 10 10 . 5 2 . 5 10 10 . 5 < M peak < 10 11 10 11 < M 0 < 6 ⇤ 10 14 M � /h 2 . 0 10 11 < M peak < 10 11 . 5 2 old 10 11 . 5 < M peak < 10 12 1 . 5 1 . 0 1 0 . 5 1 . 4 < z peak < 1 . 5 0 0 . 0 1 2 3 4 1 . 0 1 . 5 2 . 0 2 . 5 a nf a nf The bimodal formation time distribution of infall DM halos Shi et al. (2018) July 2-6, ICTP Jingjing Shi, KIAA, PKU

  6. Survivors and First-order accreted halos Survivors First-order halos 7 7 < z peak < 7 . 5 5 < z peak < 5 . 5 6 3 < z peak < 3 . 5 2 < z peak < 2 . 5 5 1 . 4 < z peak < 1 . 5 0 . 9 < z peak < 1 4 P ( a nf ) 0 . 4 < z peak < 0 . 5 0 < z peak < 0 . 1 3 2 1 0 1 2 3 4 1 2 3 4 a nf a nf Shi et al. (2018) July 2-6, ICTP Jingjing Shi, KIAA, PKU

  7. Wavering population wavering population 7 2 . 0 10 11 < M 0 < 10 11 . 5 7 < z peak < 7 . 5 10 12 < M 0 < 10 12 . 5 1 . 5 5 < z peak < 5 . 5 6 10 13 < M 0 < 10 13 . 5 3 < z peak < 3 . 5 10 14 < M 0 < 10 14 . 5 1 . 0 2 < z peak < 2 . 5 5 1 . 4 < z peak < 1 . 5 0 . 5 0 . 9 < z peak < 1 1 . 4 < z peak < 1 . 5 4 P ( a nf ) 0 . 4 < z peak < 0 . 5 0 . 0 0 < z peak < 0 . 1 3 . 0 3 10 10 < M peak < 10 10 . 5 2 . 5 10 10 . 5 < M peak < 10 11 10 11 < M 0 < 6 ⇤ 10 14 M � /h 2 . 0 10 11 < M peak < 10 11 . 5 2 10 11 . 5 < M peak < 10 12 1 . 5 1 . 0 1 0 . 5 1 . 4 < z peak < 1 . 5 0 0 . 0 1 2 3 4 1 . 0 1 . 5 2 . 0 2 . 5 a nf a nf Shi et al. (2018) July 2-6, ICTP Jingjing Shi, KIAA, PKU

  8. Mass accretion history M peak : 10 11 − 10 11 . 5 , a nf < 1 . 3 M peak : 10 11 − 10 11 . 5 , a nf > 1 . 5 10 0 10 0 Young old M vir ( z ) /M vir ( z peak ) M vir ( z ) /M vir ( z peak ) 10 − 1 10 − 1 0 1 2 3 4 0 1 2 3 4 (1 + z ) / (1 + z peak ) (1 + z ) / (1 + z peak ) Shi et al. (2018) July 2-6, ICTP Jingjing Shi, KIAA, PKU

  9. Two-Phase Mass accretion history Shi et al. (2018) 6 6 Slow Accretion 5 5 4 Turning Point 3 4 P (log xx ) 2 3 1 0 0 . 1 0 . 2 0 . 3 Fast Accretion 2 10 11 < M 0 < 6 ⇤ 10 14 M � /h 1 0 0 . 00 0 . 25 0 . 50 0 . 75 1 . 00 1 . 25 1 . 50 1 . 75 log xx = log[ H 2 ( z f ) /H 2 ( z peak )] Zhao et al. (2003) Fast Accretion Slow Accretion July 2-6, ICTP Jingjing Shi, KIAA, PKU

  10. Infall halos versus Normal halos z peak = 0 . 2 = z z peak = 1 = z z peak = 2 = z z peak = 3 = z 4 . 0 Whole Main Halos [10 11 , 10 11 . 5 ] 2 . 5 1 . 5 3 . 5 Infall Halos 3 . 0 2 . 0 2 . 5 P ( a nf ) 1 . 0 0 . 5 1 . 5 2 . 0 1 . 5 1 . 0 0 . 5 1 . 0 0 . 5 0 . 5 0 . 0 0 . 0 0 . 0 0 . 0 z peak = 0 . 2 = z z peak = 1 = z z peak = 2 = z z peak = 3 = z 2 . 5 5 . 5 4 . 0 5 . 0 [10 12 , 10 13 ] 3 . 5 2 . 0 4 . 5 3 . 0 4 . 0 3 . 5 1 . 5 2 . 5 P ( a nf ) 3 . 0 0 . 5 2 . 0 2 . 5 1 . 0 1 . 5 2 . 0 1 . 5 1 . 0 0 . 5 1 . 0 0 . 5 0 . 5 0 . 0 0 . 0 0 . 0 0 . 0 1 . 2 1 . 8 2 . 4 3 . 0 3 . 6 1 . 2 1 . 6 2 . 0 2 . 4 1 . 2 1 . 6 2 . 0 1 . 2 1 . 6 a nf a nf a nf a nf Shi et al. (2018) July 2-6, ICTP Jingjing Shi, KIAA, PKU

  11. EPS merger tree results 7 M 0 = 10 11 . 25 7 . < z peak < 8 . 5 . 1 . 5 M 0 = 10 12 . 25 5 < z peak < 5 . 5 6 M 0 = 10 13 . 25 3 < z peak < 3 . 5 1 . 0 M 0 = 10 14 . 25 2 < z peak < 2 . 5 5 1 . < z peak < 1 . 2 0 . 5 0 . 8 < z peak < 1 1 . 2 < z peak < 1 . 5 4 P ( a nf ) 0 . 4 < z peak < 0 . 6 0 . 0 0 < z peak < 0 . 2 3 10 10 < M peak < 10 10 . 5 2 10 10 . 5 < M peak < 10 11 10 11 < M peak < 10 11 . 5 2 10 11 . 5 < M peak < 10 12 1 1 1 . 2 < z peak < 1 . 5 0 0 1 2 3 4 1 . 0 1 . 5 2 . 0 2 . 5 a nf a nf Shi et al. (2018) July 2-6, ICTP Jingjing Shi, KIAA, PKU

  12. Connection between halo age and galaxy color Bray et al. (2016) July 2-6, ICTP Jingjing Shi, KIAA, PKU

  13. Nelson et al. (2015)

  14. Stellar mass at accretion time and z=0 Stellar mass/halo mass at accretion 10 10 . 9 < M peak < 10 11 . 5 10 11 . 5 < M peak < 10 12 . 1 Slow: a nf > 1 . 5 Fast: a nf < 1 . 3 � 1 . 5 � 1 . 5 log M ? , peak , 0 /M peak z=0 Slow � 2 . 0 � 2 . 0 z_peak z = z peak � 2 . 5 � 2 . 5 Fast z = 0 M ? , 0 > 10 8 M � /h z = z peak z = 0 � 3 . 0 � 3 . 0 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 log (1 + z peak ) log (1 + z peak ) Accretion redshift Shi et al. (2018), in preparation July 2-6, ICTP Jingjing Shi, KIAA, PKU

  15. Stellar mass evolution Stellar mass(z)/stellar mass at accretion 10 10 . 9 < M peak < 10 11 . 5 10 11 . 5 < M peak < 10 12 . 1 0 log m ? ( z ) /m ? , peak � 1 Slow � 2 0 . 2 < z peak < 0 . 6, Slow Fast � 3 0 . 2 < z peak < 0 . 6, Fast M ? , 0 > 10 8 M � /h 1 < z peak < 1 . 5, Slow 1 < z peak < 1 . 5, Fast � 4 � 0 . 2 0 . 0 0 . 2 0 . 4 0 . 6 � 0 . 4 � 0 . 2 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 log (1 + z ) / (1 + z peak ) log (1 + z ) / (1 + z peak ) Redshift Shi et al. (2018), in preparation July 2-6, ICTP Jingjing Shi, KIAA, PKU

  16. Gas mass at accretion time and z=0 10 10 . 9 < M peak < 10 11 . 5 10 11 . 5 < M peak < 10 12 . 1 Gas mass/halo mass at accretion z = z peak Slow: a nf > 1 . 5 0 . 09 0 . 09 z = 0 M ? , 0 > 10 8 M � /h Fast: a nf < 1 . 3 z = z peak 0 . 08 0 . 08 z = 0 log M gas , peak , 0 /M peak 0 . 07 0 . 07 0 . 06 0 . 06 Slow 0 . 05 0 . 05 0 . 04 0 . 04 0 . 03 0 . 03 0 . 02 0 . 02 z_peak Fast 0 . 01 0 . 01 z=0 0 . 00 0 . 00 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 log (1 + z peak ) log (1 + z peak ) Accretion redshift Shi et al. (2018), in preparation July 2-6, ICTP Jingjing Shi, KIAA, PKU

  17. Gas mass evolution 10 10 . 9 < M peak < 10 11 . 5 10 11 . 5 < M peak < 10 12 . 1 0 . 5 Gas mass(z)/gas mass at accretion 0 . 0 log m gas ( z ) /m gas , peak � 0 . 5 Slow � 1 . 0 � 1 . 5 Fast 0 . 2 < z peak < 0 . 6, Slow 0 . 2 < z peak < 0 . 6, Fast � 2 . 0 M ? , 0 > 10 8 M � /h 1 < z peak < 1 . 5, Slow 1 < z peak < 1 . 5, Fast � 2 . 5 � 0 . 2 0 . 0 0 . 2 0 . 4 0 . 6 � 0 . 4 � 0 . 2 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 log (1 + z ) / (1 + z peak ) log (1 + z ) / (1 + z peak ) Redshift Shi et al. (2018), in preparation July 2-6, ICTP Jingjing Shi, KIAA, PKU

Recommend


More recommend