the angular blowing a kiss
play

The angular blowing-a-kiss 001 010 000 problem 011 111 Kevin - PowerPoint PPT Presentation

The angular blowing-a-kiss 001 010 000 problem 011 111 Kevin Buchin , Irina Kostitsyna, Roel Lambers, and Martijn Struijs 100 110 101 The angular blowing-a-kiss problem n oriented agents in the plane The angular blowing-a-kiss


  1. The angular blowing-a-kiss 001 010 000 problem 011 111 Kevin Buchin , Irina Kostitsyna, Roel Lambers, and Martijn Struijs 100 110 101

  2. The angular blowing-a-kiss problem • n oriented agents in the plane

  3. The angular blowing-a-kiss problem • n oriented agents in the plane • stationary, but can rotate

  4. The angular blowing-a-kiss problem • n oriented agents in the plane • stationary, but can rotate • a pair of agents oriented towards eachother can scan

  5. The angular blowing-a-kiss problem • n oriented agents in the plane • stationary, but can rotate • a pair of agents oriented towards eachother can scan • how long does it take to scan all pairs?

  6. The angular blowing-a-kiss problem • n oriented agents in the plane • stationary, but can rotate • a pair of agents oriented towards eachother can scan • how long does it take to scan all pairs?

  7. The angular blowing-a-kiss problem • n oriented agents in the plane • stationary, but can rotate • a pair of agents oriented towards eachother can scan • how long does it take to scan all pairs?

  8. Related work • kissing problem [Bender et al. 2014] • angular freeze-tag [Fekete, Krupke 2018] • scan cover for general graphs [Fekete, Kleist, Krupke 2020]

  9. Problem description • rotations take time proportional to their angle π/ 2 time π time

  10. Problem description • rotations take time proportional to their angle π/ 2 time π time • goal: find a schedule that minimizes makespan π/ 3 π/ 3 makespan: 2 π/ 3

  11. Problem description • rotations take time proportional to their angle π/ 2 time π time • goal: find a schedule that minimizes makespan π/ 3 π/ 3 makespan: 2 π/ 3 • synchronous schedule: ⌊ n/ 2 ⌋ simultaneous scans per round • synchronous schedule: ⌊ n/ 2 ⌋ simultaneous scans per round • synchronous schedule: ⌊ n/ 2 ⌋ simultaneous scans per round • synchronous schedule: ⌊ n/ 2 ⌋ simultaneous scans per round synchronous synchronous synchronous synchronous asynchronous asynchronous asynchronous asynchronous

  12. Results line/1D uniform circle general 2D π ( 3 2 ⌈ log n ⌉ − 1 async. π ( ⌈ log n ⌉ − 1) ∼ π log n 2 ) sync. π ( ⌈ log n ⌉ − 1) 2 π log n a – LB π ( ⌈ log n ⌉ − 1) ∼ π log n – a when n is a power of 2

  13. Results line/1D uniform circle general 2D π ( 3 2 ⌈ log n ⌉ − 1 async. π ( ⌈ log n ⌉ − 1) ∼ π log n 2 ) sync. π ( ⌈ log n ⌉ − 1) 2 π log n a – LB π ( ⌈ log n ⌉ − 1) ∼ π log n – a when n is a power of 2

  14. Synchronous on a circle with n = 2 k for phase ℓ = 1 , . . . , k : scan pairs that differ in ℓ -th bit 001 010 000 011 111 100 110 101 1-bit agents rotate clockwise 0-bit agents rotate counter-clockwise

  15. Synchronous on a circle with n = 2 k for phase ℓ = 1 , . . . , k : scan pairs that differ in ℓ -th bit phase 1 : 001 010 000 011 111 100 110 101 1-bit agents rotate clockwise 0-bit agents rotate counter-clockwise

  16. Synchronous on a circle with n = 2 k for phase ℓ = 1 , . . . , k : scan pairs that differ in ℓ -th bit phase 1 : 001 010 000 011 111 100 110 101 1-bit agents rotate clockwise 0-bit agents rotate counter-clockwise

  17. Synchronous on a circle with n = 2 k for phase ℓ = 1 , . . . , k : scan pairs that differ in ℓ -th bit phase 1 : 001 010 000 011 111 100 110 101 1-bit agents rotate clockwise 0-bit agents rotate counter-clockwise

  18. Synchronous on a circle with n = 2 k for phase ℓ = 1 , . . . , k : scan pairs that differ in ℓ -th bit phase 1 : 001 010 000 011 111 100 110 101 1-bit agents rotate clockwise 0-bit agents rotate counter-clockwise

  19. Synchronous on a circle with n = 2 k for phase ℓ = 1 , . . . , k : scan pairs that differ in ℓ -th bit phase 1 : 001 010 000 011 111 100 110 101 1-bit agents rotate clockwise 0-bit agents rotate counter-clockwise

  20. Synchronous on a circle with n = 2 k for phase ℓ = 1 , . . . , k : scan pairs that differ in ℓ -th bit phase 2 : 001 010 000 011 111 100 110 101 1-bit agents rotate clockwise 0-bit agents rotate counter-clockwise

  21. Synchronous on a circle with n = 2 k for phase ℓ = 1 , . . . , k : scan pairs that differ in ℓ -th bit phase 2 : 001 010 000 011 111 100 110 101 1-bit agents rotate clockwise 0-bit agents rotate counter-clockwise

  22. Synchronous on a circle with n = 2 k for phase ℓ = 1 , . . . , k : scan pairs that differ in ℓ -th bit phase 3 : 001 010 000 011 111 100 110 101 1-bit agents rotate clockwise 0-bit agents rotate counter-clockwise

  23. Synchronous on a circle with n = 2 k for phase ℓ = 1 , . . . , k : scan pairs that differ in ℓ -th bit phase 3 : 001 • phase ℓ : 010 000 scan pairs at distance 2 ℓ − 1 (2 i + 1) for i = 0 , . . . , 2 k − ℓ − 1 011 111 100 110 101 1-bit agents rotate clockwise 0-bit agents rotate counter-clockwise

  24. Synchronous on a circle with n = 2 k for phase ℓ = 1 , . . . , k : scan pairs that differ in ℓ -th bit phase 3 : 001 • phase ℓ : 010 000 scan pairs at distance 2 ℓ − 1 (2 i + 1) for i = 0 , . . . , 2 k − ℓ − 1 011 111 • costs: π per phase to scan pairs 100 110 π between phases 2 π log n in total 101 1-bit agents rotate clockwise 0-bit agents rotate counter-clockwise

  25. Synchronous on a line · · · · · · p n p 1 p 2 p n − 1

  26. Synchronous on a line · · · · · · p n p 1 p 2 p n − 1 Algorithm: iteratively construct schedule S n with rules: base case: S 2 , with 0 time p 1 p 2 1. S k → S k − 1 if k even, with the same time 2. S k → S 2 k , adding π time

  27. Synchronous on a line · · · · · · p n p 1 p 2 p n − 1 Algorithm: iteratively construct schedule S n with rules: base case: S 2 , with 0 time p 1 p 2 1. S k → S k − 1 if k even, with the same time 2. S k → S 2 k , adding π time Time: S 2 � S n with ⌈ log( n/ 2) ⌉ applications of rule 2, so π ( ⌈ log n ⌉ − 1) time in total

  28. Synchronous on a line 1. S k → S k − 1 if k even, in the same time

  29. Synchronous on a line 1. S k → S k − 1 if k even, in the same time · · · · · · round i of S k : p k − 1 p 1 p 2 p j p k

  30. Synchronous on a line 1. S k → S k − 1 if k even, in the same time · · · · · · round i of S k : p k − 1 p 1 p 2 p j p k · · · · · · round i of S k − 1 : p k − 1 p k p 1 p 2 p j bye: p j

  31. Synchronous on a line 2. S k → S 2 k , adding π time

  32. Synchronous on a line 2. S k → S 2 k , adding π time S k · · · · · · p 1 p 2 p j p k . . . . . . . . . . . .

  33. Synchronous on a line 2. S k → S 2 k , adding π time S k mirror ( S k ) · · · · · · · · · · · · p ′ p ′ p ′ p 1 p 2 p j p k p ′ j 2 1 k . . . . . . . . . . . . . . . . . . . . . . . .

  34. Synchronous on a line 2. S k → S 2 k , adding π time S k mirror ( S k ) · · · · · · · · · · · · p ′ p ′ p ′ p 1 p 2 p j p k p ′ j 2 1 k . . . . . . . . . . . . . . . . . . . . . . . .

  35. Synchronous on a line 2. S k → S 2 k , adding π time S k mirror ( S k ) · · · · · · · · · · · · p ′ p ′ p ′ p 1 p 2 p j p k p ′ j 2 1 k . . . . . . . . . . . . . . . . . . . . . . . .

  36. Synchronous on a line 2. S k → S 2 k , adding π time S k mirror ( S k ) · · · · · · · · · · · · p ′ p ′ p ′ p 1 p 2 p j p k p ′ j 2 1 k . . . . . . . . . . . . . . . . . . . . . . . . final rounds: scan bipartite graph between left and right · · · · · · · · · · · · p ′ p ′ p ′ p ′ p 1 p 2 p j p j p k p ′ j j 2 1 k

  37. Example: S 2 → S 4 → S 3 → S 6 S 2 p 1 p 2

  38. Example: S 2 → S 4 → S 3 → S 6 S 4 p 1 p 2 p 3 p 4

  39. Example: S 2 → S 4 → S 3 → S 6 S 4 p 1 p 2 p 3 p 4 p 1 p 2 p 3 p 4 p 1 p 2 p 3 p 4

  40. Example: S 2 → S 4 → S 3 → S 6 S 4 p 1 p 2 p 3 p 4 p 1 p 2 p 3 p 4 p 1 p 2 p 3 p 4

  41. Example: S 2 → S 4 → S 3 → S 6 S 3 p 1 p 2 p 3 p 1 p 2 p 3 p 1 p 2 p 3

  42. Example: S 2 → S 4 → S 3 → S 6 S 6 p 1 p 2 p 3 p 4 p 5 p 6 p 1 p 2 p 3 p 4 p 5 p 6 p 1 p 2 p 3 p 4 p 5 p 6

  43. Example: S 2 → S 4 → S 3 → S 6 S 6 p 1 p 2 p 3 p 4 p 5 p 6 p 1 p 2 p 3 p 4 p 5 p 6 p 1 p 2 p 3 p 4 p 5 p 6

  44. Example: S 2 → S 4 → S 3 → S 6 S 6 p 1 p 2 p 3 p 4 p 5 p 6 p 1 p 2 p 3 p 4 p 5 p 6 p 1 p 2 p 3 p 4 p 5 p 6 p 1 p 2 p 3 p 4 p 5 p 6 p 1 p 2 p 3 p 4 p 5 p 6

  45. Example: S 2 → S 4 → S 3 → S 6 S 6 p 1 p 2 p 3 p 4 p 5 p 6 p 1 p 2 p 3 p 4 p 5 p 6 p 1 p 2 p 3 p 4 p 5 p 6 p 1 p 2 p 3 p 4 p 5 p 6 p 1 p 2 p 3 p 4 p 5 p 6

Recommend


More recommend